• Title/Summary/Keyword: Rate-Distortion Optimization

Search Result 134, Processing Time 0.022 seconds

Complexity Reduction Method Using Inter-layer CU Depth Information for Scalable Video Coding Base on HEVC (계층 간 CU 깊이 예측을 이용한 HEVC SVC 고속 부호화 방법)

  • Jang, Hyeong-Moon;Nam, Jung-Hak;Sim, Dong-Gyu
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.765-780
    • /
    • 2012
  • In this paper, we propose a fast mode decision method that determines the coding unit depth for enhancement layers to improve an encoding speed of a scalable video encoder based on HEVC. To decide the coding unit depth of the enhancement layer, firstly, the coding unit depth of the corresponded coding unit in the basement layer is employed. At this stage, the final CU depth is decided by calculating the rate-distortion costs of one lower depth to one upper depth of the referenced depth. The proposed method can reduce a computational load since it does not calculate the rate-distortion costs for all the depths of a target CU. We found that the proposed algorithm decreases encoding complexity of 26% with approximately 1.4% bit increment, compared with the simulcast encoder of the HM 4.0.

Video Transmission Method for Constant Video Quality in Next-Generation Wireless Networks (차세대 이동망에서 영상 품질을 보장하기 위한 전송 방법)

  • Park, Sang-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.175-178
    • /
    • 2007
  • According to recently presented QoS architecture by 3GPP, a traffic conditioner may be deployed to provide conformance of the negotiated QoS. A real-time frame-layer rate control method which can be applied to the traffic conditioner is proposed. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. The proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder.

  • PDF

Fast Intra Mode Decision for H.264/AVC by Using the Approximation of DCT Coefficient (H.264/AVC에서 DCT 계수의 근사화를 이용한 고속 인트라 모드 결정 기법)

  • La, Byeong-Du;Eom, Min-Young;Choe, Yoon-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.23-32
    • /
    • 2007
  • The H.264/AVC video coding standard uses rate distortion optimization (RDO) method to improve the compression performance in the intra prediction. The complexity and computational load are increased more than previous standard by using this method, even though this standard selects the best coding mode for the current macroblock. This paper proposes a fast intra mode decision algorithm for H.264/AVC encoder based on dominant edge direction (DED). To apply the idea, this algorithm uses the approximation of discrete cosine transform (DCT) coefficient. By detecting the DED, 3 modes instead of 9 modes are chosen for RDO calculation to decide the best mode in the $4{\times}4$ luma block. As for the $16{\times}16$ luma and $8{\times}8$ chroma block, instead of 4 modes, only 2 modes are searched. Experimental results show that the computation time of the proposed algorithm is decreased to about 72% of the full search method with negligible quality loss.

Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder (하드웨어 기반 HEVC 인트라 인코더에서 다운 샘플링을 사용한 고속 Rough Mode Decision)

  • Jang, Ji Hun;Rhee, Chae Eun
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • HEVC is the next compression standard and is expected to be used widely replacing the conventional H.264/AVC standard. The compression ratio of the HEVC is twice times than H.264/AVC, whereas its computational complexity is increased by up to 40%. Many research efforts have been made to reduce the computational complexity and to speed up encoding. For intra coding, the rough mode decision (RMD) is commonly applied. The rate-distortion optimization (RDO) process to decide the best mode is too complex so that RMD chooses the candidate modes with a simple process and sends the candidates to RDO process. However, for large-size blocks, the RMD also requires considerable computations. In this paper, a down-sampling scheme is proposed for the RMD process. The reference pixel loading, predicted pixel generation are performed using the down-sampled pixel data. When the proposed scheme is applied to the RMD, the computational complexity is reduced by 70% with a marginal bitrate increase of 0.04%. In terms of area of hardware-based RMD, the gate count and the buffer size is reduced 33% and 66%, respectively.

CU Depth Decision Based on FAST Corner Detection for HEVC Intra Prediction (HEVC 화면 내 예측을 위한 FAST 에지 검출 기반의 CU 분할 방법)

  • Jeon, Seungsu;kim, Namuk;Jeon, Byeungwoo
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.484-492
    • /
    • 2016
  • The High efficiency video coding (HEVC) is the newest video coding standard that achieves coding efficiency higher than previous video coding standards such as H.264/AVC. In intra prediction, the prediction units (PUs) are derived from a large coding unit (LCU) which is partitioned into smaller coding units (CUs) sizing from 8x8 to 64x64 in a quad-tree structure. As they are divided until having the minimum depth, Optimum CU splitting is selected in RDO (Rate Distortion Optimization) process. In this process, HEVC demands high computational complexity. In this paper, to reduce the complexity of HEVC, we propose a fast CU mode decision (FCDD) for intra prediction by using FAST (Features from Accelerated Segment Test) corner detection. The proposed method reduces computational complexity with 53.73% of the computational time for the intra prediction while coding performance degradation with 0.7% BDBR is small compared to conventional HEVC.

Fast Inter/Intra Mode Decision Algorithm in H.264/AVC Considering Coding Efficiency (부호화 효율을 고려한 고속 인터/인트라 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8C
    • /
    • pp.720-728
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of H.2641AVC encoder is greatly increased. Specially, Inter/Intra mode decision method of H.264/AVC using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision considering coding efficiency. From the simulation results, the proposed algorithm reduce the encoding time by maximum 80% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.

Real-Time Rate Control with Token Bucket for Low Bit Rate Video (토큰 버킷을 이용한 낮은 비트율 비디오의 실시간 비트율 제어)

  • Park, Sang-Hyun;Oh, Won-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2315-2320
    • /
    • 2006
  • A real-time frame-layer rate control algorithm with a token bucket traffic shaper is proposed for low bit rate video coding. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize the average distortion over an entire sequence as well as variations in distortion between frames. In order to reduce the quality fluctuation, we use a sliding window scheme which does not require the pre-analysis process. Therefore, the proposed algorithm does not produce time delay from encoding, and is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better visual and PSNR performances than the existing rate control method.

Optimization of H.264 Encoder using SIMD Instructions (SIMD 명령어를 이용한 H.264 인코더 최적화)

  • 김용환;김제우;김태완;최병호
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.175-178
    • /
    • 2003
  • 최근에 표준화가 완료된 차세대 비디오 코딩 표준인 H.264 는 적은 비트율에서 높은 품질의 비디오 압축을 목표로 하기 때문에, H.263+ 및 MPEG-2/4 와 같은 이전의 표준들보다 훨씬 더 많은 연산을 필요로 한다. 본 논문은 SIMD (Single Instruction Multiple Data) 명령어를 가지는 범용 프로세서(예를 들면, 펜티엄 4)에서 H.264 S/W 인코더의 속도 최적화를 위한 알고리듬 및 구현 기술을 제안한다. 화질 저하 없이 RDO (Rate Distortion Optimization) 의 속도를 높일 수 있는 효율적인 모드 검색 건너뛰기 알고리듬을 제안하고, SIMD 명령어를 이용하여 1/4 화소 보간, SAD(Sum of Absolute Difference), SATD(Sum of Absolute Transformed Difference), SSD (Sum of Squared Difference) 등의 개별 루틴의 속도를 최적화한다. 일련의 최적화 후에 인코더는 화질 저하 없이 H.264 레퍼런스 인코더보다 평균 3배 정도의 속도 향상이 이루어진다.

  • PDF

Latent Shifting and Compensation for Learned Video Compression (신경망 기반 비디오 압축을 위한 레이턴트 정보의 방향 이동 및 보상)

  • Kim, Yeongwoong;Kim, Donghyun;Jeong, Se Yoon;Choi, Jin Soo;Kim, Hui Yong
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.31-43
    • /
    • 2022
  • Traditional video compression has developed so far based on hybrid compression methods through motion prediction, residual coding, and quantization. With the rapid development of technology through artificial neural networks in recent years, research on image compression and video compression based on artificial neural networks is also progressing rapidly, showing competitiveness compared to the performance of traditional video compression codecs. In this paper, a new method capable of improving the performance of such an artificial neural network-based video compression model is presented. Basically, we take the rate-distortion optimization method using the auto-encoder and entropy model adopted by the existing learned video compression model and shifts some components of the latent information that are difficult for entropy model to estimate when transmitting compressed latent representation to the decoder side from the encoder side, and finally compensates the distortion of lost information. In this way, the existing neural network based video compression framework, MFVC (Motion Free Video Compression) is improved and the BDBR (Bjøntegaard Delta-Rate) calculated based on H.264 is nearly twice the amount of bits (-27%) of MFVC (-14%). The proposed method has the advantage of being widely applicable to neural network based image or video compression technologies, not only to MFVC, but also to models using latent information and entropy model.

An Optimal Selection of Frame Skip and Spatial Quantization for Low Bit Rate Video Coding (저속 영상부호화를 위한 최적 프레임 율과 공간 양자화 결정)

  • Bu, So-Young;Lee, Byung-Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.842-847
    • /
    • 2004
  • We present a new video coding technique to tradeoff frame rate and picture quality for low bit rate video coding. We show a model equation for selecting the optimal frame rate from the motion content of the source video. We can determine DCT quantization parameter (QP) using the frame rate and bit rate. For objective video quality measurement we propose a simple and effective error measure for skipped frames. The proposed method enhances the video quality up to 2 ㏈ over the H.263 TMN5 encoder.