• Title/Summary/Keyword: Rate theory

Search Result 1,724, Processing Time 0.025 seconds

Prediction of the Forming Limit Diagram for AZ31B Sheet at Elevated Temperatures Considering the Strain-rate Effect (변형률속도 효과를 고려한 AZ31B 판재의 온간 성형한계도 예측)

  • Choi, S.C.;Kim, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.172-175
    • /
    • 2009
  • The purpose of this study is to predict the forming limit diagram (FLD) of strain-rate sensitive materials on the basis of the Marciniak and Kuczynski (M-K) theory. The strain-rate effect is taken into consideration in such a way that the stress-strain curves for various strain-rates are inputted into the formulation as point data, not as curve-fitted models such as power function. To solve the nonlinear system of equations derived from the equilibrium and constraints in the groove region and the safe zone, the Newton-Raphson method is used. The theoretical FLDs using four different yield criteria, that are von Mises, Hill (1948), Hill (1979), Logan and Hosford, are compared with the experimental, numerical (FEA) and other theoretical results. A new trial is made where a modified M-K model having n-step grooves is introduced to describe a real localized neck.

  • PDF

A Constitutive Model for the Rate-dependent Deformation Behavior of a Solid Polymer (속도 의존적인 폴리머 거동에 대한 구성적 모델)

  • Ho, K.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.216-222
    • /
    • 2013
  • Solid polymers exhibit rate-dependent deformation behavior such as nonlinear strain rate sensitivity and stress relaxation like metallic materials. Despite the different microstructures of polymeric and metallic materials, they have common properties with respect to inelastic deformation. Unlike most metallic materials, solid polymers and shape memory alloys (SMAs) exhibit highly nonlinear stress-strain behavior upon unloading. The present work employs the viscoplasticity theory [K. Ho, 2011, Trans. Mater. Process. 20, 350-356] developed for the pseudoelastic behavior of SMAs, which is based on unified state variable theory for the rate-dependent inelastic deformation behavior of typical metallic materials, to depict the curved unloading behavior of polyphenylene oxide (PPO). The constitutive equations are characterized by the evolution laws of two state variables that are related to the elastic modulus and the back stress. The simulation results are compared with the experimental data obtained by Krempl and Khan [2003, Int. J. Plasticity 19, 1069-1095].

Game Theoretic based Distributed Dynamic Power Allocation in Irregular Geometry Multicellular Network

  • Safdar, Hashim;Ullah, Rahat;Khalid, Zubair
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.199-205
    • /
    • 2022
  • The extensive growth in data rate demand by the smart gadgets and mobile broadband application services in wireless cellular networks. To achieve higher data rate demand which leads to aggressive frequency reuse to improve network capacity at the price of Inter Cell Interference (ICI). Fractional Frequency Reuse (FFR) has been recognized as an effective scheme to get a higher data rate and mitigate ICI for perfect geometry network scenarios. In, an irregular geometric multicellular network, ICI mitigation is a challenging issue. The purpose of this paper is to develop distributed dynamic power allocation scheme for FFR based on game theory to mitigate ICI. In the proposed scheme, each cell region in an irregular multicellular scenario adopts a self-less behavior instead of selfish behavior to improve the overall utility function. This proposed scheme improves the overall data rate and mitigates ICI.

The Foreign Exchange Exposure and Asymmetries on Individual Firms (개별기업의 환노출과 비대칭성에 관한 연구)

  • Lee, Hyon-Sok
    • The Korean Journal of Financial Management
    • /
    • v.20 no.1
    • /
    • pp.305-329
    • /
    • 2003
  • This work analyzes the influence of the dollar and yen currency on the rate of return of the individual firms and its symmetries based on the data from Jan. 5 1987 to Dec. 28, 2001. GARCH and autoregressive error models were used for on the daily data, due to the heteroscedascity and autoregression of the error terms, and as for the monthly data, this paper follows the autoregressive error models. Daily data fumed out to be a better explanatory variable in detecting exchange rate exposure, and EGARCH(1, 1) and GJR-GRARCH(1, 1) have higher competence in analyzing the daily data. Also, most of the exposed firms have been exposed in the negative region, and appreciation of exchange rate does not help enhancing the asset value of the domestic value. Analysis on the asymmetries let us conclude that high proportion of domestic firms face asymmetric exchange rate exposure, and that the pricing-to-market theory carries more conviction than the real option theory. Furthermore, monthly data are more precise in analysis of asymmetries.

  • PDF

Rate-Distortion Optimized Zerotree Image Coding using Wavelet Transform (웨이브렛 변환을 이용한 비트율-왜곡 최적화 제로트리 영상 부호화)

  • 이병기;호요성
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.3
    • /
    • pp.101-109
    • /
    • 2004
  • In this paper, we propose an efficient algerian for wavelet-based sti image coding method that utilizes the rate-distortion (R-D) theory. Since conventional tree-structured image coding schemes do not consider the rate-distortion theory properly, they show reduced coding performance. In this paper, we apply an rate-distortion optimized embedding (RDE) operation into the set partitioning in hierarchical trees (SPIHT) algorithm. In this algorithm, we use the rate-distortion slope as a criterion for the coding order of wavelet coefficients in SPIHT lists. We also describe modified set partitioning and rate-distortion optimized list scan methods. Experimental results demonstrate that the proposed method outperforms the SPIHT algorithm and the rate-distortion optimized embedding algerian with respect to the PSNR (peak signal-to-noise ratio) performance.

Determination of Dynamic Yield Stress of Copper Alloys Using Rod Impact Test (봉충격시험에 의한 동합금의 동적 항복응력 결정)

  • 이정민;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1041-1050
    • /
    • 1995
  • The deformed shape of rod specimen of copper alloys was measured after the high-velocity impact against a rigid anvil and analyzed with one-dimensional theory to determine dynamic yield stress and strain-rate sensitivity which is defined as the ratio of dynamic yield stress to static flow stress. The evvect of two-dimensional deformation on the determination of dynamic yield stress by the one-dimensional theory, was investigated through comparison with the analysis by hydrocode. It showed that the one-dimensional theory is relatively consistent with two-dimensional hydrocode in spite of its simplicity in analysis.

Clogging theory-based real time grouting management system applicable in soil conditions

  • Kwon, Young-Sam;Kim, Jinchun;Lee, In-Mo
    • Geomechanics and Engineering
    • /
    • v.16 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • In this study, a real-time grouting management system based on the clogging theory was established to manage injection procedure in real time. This system is capable of estimating hydraulic permeability with the passage of time as the grout permeates through the ground, and therefore, capable of estimating real time injection distance and flow rate. By adopting the Controlled Injection Pressure (CoIP) model, it was feasible to predict the grout permeation status with the elapse of time by consecutively updating the hydraulic gradient and flow rate estimated from a clogging-induced alteration of pore volume. Moreover, a method to estimate the volume of the fractured gap according to the reduction in injection pressure was proposed. The validity of the proposed system was successfully established by comparing the estimated values with the measured field data.

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat;Boonchai Phungpaingam;Kamtornkiat Musiket;Yunping Xi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.383-392
    • /
    • 2023
  • The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

Elution Behavior of Protein and Pullulan in Asymmetrical Flow Field-flow Fractionation (AsFlFFF)

  • Ji, Eun-Sun;Choe, Seong-Ho;Yun, Guk-Ro;Chun, Jong-Han;Lee, Seung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1433-1438
    • /
    • 2006
  • An AsFlFFF channel was designed and built, and then tested for analysis of pullulans and proteins. Pullulans and proteins having various nominal molecular weights were injected at various conditions of the cross-flow rate ($F_c$) and the channel-out flow rate ($F_{out}$). The retention (measured by the retention ratio R) and the zone broadening (measured by the plate height H) were measured, and then compared with theory. When the incoming flow rate, $f_{in}$ (and thus $F_{out}$) was varied with $F_c$ fixed at 2.5 mL/min, the plate height measured for the pullulan with nominal molecular weight (M) of about 100,000 showed the trend expected by the longitudinal diffusion theory (H decreases with increasing flow rate). In contrast, when $F_{out}$ was varied with the flow rate ratio, $F_c/F_{out}$, fixed constant at 5, the plate height measured for the same sample showed the trend expected from the non-equilibrium theory (H increases with increasing flow rate). Calibration plots (log D vs. log M) obtained with pullulans and proteins were not coincide, probably due to the difference in molecular conformation, suggesting the analysis of pullulans and proteins using AsFlFFF requires independent calibration. It was found that the linearity of the protein-calibration plot was improved by using a buffer solution as the carrier.

Prediction of the Forming Load of Non-Axisymmetric Isothermal Forging using Approximate Similarity Theory (근사 상사 이론을 이용한 비축대칭 등온 단조의 가공하중 예측)

  • 최철현
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.71-75
    • /
    • 1999
  • An approximate similarity theory has been applied to predict the forming load of non-axisymmetric forging of aluminum alloys through model material tests. The approximate similarity theory is applicable when strain rate sensitivity geometrical size and die velocity of model materials are different from those of real materials. Actually the forming load of yoke which is an automobile part made of aluminum alloys(Al-6061) is predicted by using this approximate similarity theory. Firstly upset forging tests are have been carried out to determine the flow curves of three model materials and aluminum alloy(Al-6061) and a suitable model material is selected for model material test of Al-6061 And then and forging tests of aluminum yokes have been performed to verify the forming load predicted from the model material which has been selected from above upset forging tests, The forming loads of aluminum yoke forging predicted by this approximate similarity theory are in good agreement with the experimental results of Al-6061 and the results of finite element analysis using DEFORM-3D.

  • PDF