• Title/Summary/Keyword: Rate of steam consumption

Search Result 22, Processing Time 0.022 seconds

Analysis of the Characteristics of Reformer for the Application of Hydrogen Fuel Cell Systems to LNG Fueled Ships (LNG 추진선박에 수소 연료전지 시스템 적용을 위한 개질기의 특성 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.135-144
    • /
    • 2021
  • In this study, we investigated the characteristics of the process of hydrogen production using boil-of gas (BOG) generated from an LNG-fueled ship and the application of hydrogen fuel cell systems as auxiliary engines. In this study, the BOG steam reformer process was designed using the UniSim R410 program, and the reformer outlet temperature, pressure, and the fraction and consumption of the product according to the steam/carbon ratio (SCR) were calculated. According to the study, the conversion rate of methane was 100 % when the temperature of the reformer was 890 ℃, and maximum hydrogen production was observed. In addition, the lower the pressure, the higher is the reaction activity. However, higher temperatures have led to a decrease in hydrogen production owing to the preponderance of adverse reactions and increased amounts of water and carbon dioxide. As SCR increased, hydrogen production increased, but the required energy consumption also increased proportionally. Although the hydrogen fraction was the highest when the SCR was 1.8, it was confirmed that the optimal operation range was for SCR to operate at 3 to prevent cocking. In addition, the lower the pressure, the higher is the amount of carbon dioxide generated. Furthermore, 42.5 % of the LNG cold energy based on carbon dioxide generation was required for cooling and liquefaction.

Hydrogen Production by the High Temperature Steam Electrolysis of NiO/YSZ/Pt Cell (NiO/YSZ/Pt 전해셀의 고온 수증기 전해에 의한 수소제조 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Lee, Shi-Woo;Seo, Doo-Won;Hong, Ki-Suk;Han, In-Sub;Woo, Sang-Kuk
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2006
  • High temperature electrolysis is a promising technology to produce massively hydrogen using renewable and nuclear energy. Solid oxide fuel cell materials are candidates as the components of steam electrolysers. However, the polarization characteristics of the typical electrode materials during the electrolysis have not been intensively investigated. In this study, NiO electrode was deposited on YSZ electrolyte by spin coat process and firing at $1300^{\circ}C$. Pt electrode was applied on the other side of the electrolyte to compare the polarization characteristics with those by NiO during electrolysis. The $H_2$ evolution rate was also monitored by measuring the electromotive force of Lambda probe and calculated by thermodynamic consideration. At low current density, Pt showed lower cathodic polarization and thus higher current efficiency than Ni, but the oxidation of Ni into NiO caused the increase of anodic resistance with increasing current density. High overpotential induced high power consumption to produce hydrogen by electrolysis.

Application of food waste leachate to a municipal solid waste incinerator for reduction of NOx emission and ammonia water consumption

  • Park, Jong Jin;Kim, Daegi;Lee, Kwanyong;Lee, Kyung Tae;Park, Ki Young
    • Environmental Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.171-174
    • /
    • 2015
  • This study investigates the possibility of applying food waste leachate to a municipal solid waste incinerator in order to effectively dispose of the material and to reduce the environmental impact. The spray positions and the quantity of the food waste leachate in municipal solid waste incinerator were adjusted to examine the stability of the process and the environmental effect. The rear of the first combustion chamber was found to be the desirable location for an environmental perspective in this study. At a food waste leachate injection rate of $2m^3/h$, the concentration of the emitted NOx decreased from 130 ppm to 40 ppm. The consumption of ammonia water was reduced by about 36% after adding the food waste leachate. The inclusion of the food waste leachate to the municipal incinerator also increased the amount of steam that was produced. The results of this research indicated that a positive outcome can be expected in terms of diversifying the treatment options for food waste leachate. The results also provide guidance for institutional framework to manage the incineration of the food waste leachate.

Effects of Blanching Methods on Nutritional Properties and Physicochemical Characteristics of Hot-Air Dried Edible Insect Larvae

  • Jae Hoon Lee;Tae-Kyung Kim;Sun-Young Park;Min-Cheol Kang;Ji Yoon Cha;Min-Cheol Lim;Yun-Sang Choi
    • Food Science of Animal Resources
    • /
    • v.43 no.3
    • /
    • pp.428-440
    • /
    • 2023
  • Global meat consumption is increasing worldwide, however, supply remains lacking. Several alternative protein sources, such as cultured meat, plant-based protein production, and edible insects, have been proposed to overcome this shortage. Interestingly, edible insects are characterized by superior digestive and absorptive qualities that make them the ideal replacement for traditional protein production. This study aims to further the processing ability of insect protein by investigating the effects of various pre-treatment methods, such as blanching (HB), roasting (HR), and superheated steam (HS), on the nutritional properties and physicochemical characteristics of proteins extracted from Hermetia illucens larvae. The drying rate, pH value, color analysis, amino and fatty acid profile, as well as bulk density, shear force, and rehydration ratios of the above pre-treatment methods, were explored. HS was found to have the highest drying rate and pH value analysis showed that HB and HS samples have significantly higher values compared to the other modalities. Raw edible insects had the highest value in the sum of essential amino acid (EAA) and EAA index when compared to EAAs. HB and HS showed significantly lower bulk density results, and HS showed the highest shear force and the highest value in rehydration ratio, regardless of immersion time. Therefore, taking the above results together, it was found that blanching and superheated steam blanching pre-treatment were the most effective methods to improve the processing properties of H. illucens after hot-air drying.

Effects of Operating Conditions on Adsorption and Desorption of Benzene in TSA Process Using Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X 충진탑을 사용한 TSA 공정에서 조업조건이 벤젠의 흡착 및 탈착에 미치는 영향)

  • Jung, Min-Young;Suh, Sung-Sup
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.594-603
    • /
    • 2018
  • The effects of operating conditions such as benzene concentration, nitrogen flow rate, steam flow rate, and bed temperature on TSA process were experimentally investigated as a potential VOC removal technology using two kinds of beds packed with activated carbon and zeolite 13X. The TSA cycle studied was composed of the adsorption step, steam desorption step, and drying and cooling step. At 2% benzene concentration, the total adsorption amounts of zeolite 13X and activated carbon were 4.44 g and 3.65 g, respectively. Since the zeolite 13X has a larger packing density than that of the activated carbon, the larger benzene amount could be adsorbed in a single cycle. Increasing the water vapor flow rate to 75 g/hr at 2% benzene concentration reduced the desorption time from 1 hr to a maximum of 33 min. If the desorption time is shortened, the drying and cooling step period can be relatively increased. Accordingly, the steam removal and bed cooling could be sufficiently performed. The desorption amounts increased with the increase of the bed temperature. However, the energy consumption increased while the desorption amount was almost constant above $150^{\circ}C$. In the continuous cycle process, when the amount of remained benzene at the completion of the regeneration step increased, it might cause a decrease in the working capacity of the adsorbent. The continuous cycle process experiment for zeolite 13X showed that the amount of remained benzene at the end of regeneration step maintained a constant value after the fourth cycle.

Performance Analysis of Upgrading Process with Amine-Based CO2 Capture Pilot Plant

  • Kwak, No-Sang;Lee, Junghyun;Lee, Dong Woog;Lee, Ji Hyun;Shim, Jae-Goo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2018
  • This study applied upgrades to the processes of a 10 MW wet amine $CO_2$ capture pilot plant and conducted performance evaluation. The 10 MW $CO_2$ Capture Pilot Plant is a facility that applies 1/50 of the combustion flue gas produced from a 500 MW coal-fired power plant, and is capable of capturing up to 200 tons of $CO_2$. This study aimed to quantitatively measure efficiency improvements of post-combustion $CO_2$ capture facilities resulting from process upgrades to propose reliable data for the first time in Korea. The key components of the process upgrades involve absorber intercooling, lean/rich amine exchanger efficiency improvements, reboiler steam TVR (Thermal Vapor Recompression), and lean amine MVR (Mechanical Vapor Recompression). The components were sequentially applied to test the energy reduction effect of each component. In addition, the performance evaluation was conducted with the absorber $CO_2$ removal efficiency maintained at the performance evaluation standard value proposed by the IEA-GHG ($CO_2$ removal rate: 90%). The absorbent used in the study was the highly efficient KoSol-5 that was developed by KEPCO (Korea Electric Power Corporation). From the performance evaluation results, it was found that the steam consumption (regeneration energy) for the regeneration of the absorbent decreased by $0.38GJ/tonCO_2$ after applying the process upgrades: from $2.93GJ/ton\;CO_2$ to $2.55GJ/tonCO_2$. This study confirmed the excellent performance of the post-combustion wet $CO_2$ capture process developed by KEPCO Research Institute (KEPRI) within KEPCO, and the process upgrades validated in this study are expected to substantially reduce $CO_2$ capture costs when applied in demonstration $CO_2$ capture plants.

The Evaluation of the Application of Modified Wood Powder Spacers to Liner Board Mill Trials (개질처리된 목질계 스페이서의 산업용지 생산현장 적용평가)

  • Seo, Yung Bum;Yoon, Doh-Hyun;Sung, Yong Joo;Gwon, Wan-Oh;Kim, Jin-doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.98-103
    • /
    • 2015
  • The reduction of the energy consumption in papermaking process become more important issue because of the regulation of green house gas (GHG) emission. Since more than half of energy for papermaking process is consumed during drying process, the increase of the drying efficiency would be very important solution for saving energy and reduction of GHG emission. The improvement of drying efficiency could be very difficult for the liner board mill because the liner board are usually made of recycled paper, OCC (old corrugated container). The short fiber and fines originated the OCC lead to compact sheet structure and delay the water flow out during wet pressing process and drying process. The application of lignocellulose spacer could provide more loose wet sheet structure and result in the higher drainage rate and the improved drying efficiency. In this study, the effects of the application of lignocellulose spacer to the liner board mill were evaluated based on the mill trial. In order to overcome the common disadvantage of the spacer, the loss of strength properties, the spacer was pretreated with amphoteric polyelectrolyte during mill trial. The results showed the application of pretreated spacer improved the drying efficiency by reducing steam consumption. And the loss in the strength properties by the spacer could be supplemented by the pretreatment.

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

A Study on the Improvement of LNGC Re-liquefaction System (LNG선 재액화 시스템의 성능 개선에 관한 연구)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.10
    • /
    • pp.659-664
    • /
    • 2009
  • LNG carriers have, up to 2006, mainly been driven by steam turbines. The Boil-Off Gas from the LNG cargo tanks has so far been used as fuel. This is a costly solution that requires special skills during construction and operation. Alternative propulsion systems offer far better fuel economical efficiency than steam turbines. Instead of previous practice using Boil-Off Gas as a fuel, the Re-liquefaction system establishes a solution to liquefy the Boil-Off Gas and return the LNG to the cargo tanks. This Re-liquefaction of Boil-Off Gases on LNG carriers results in increased cargo deliveries and allows owners and operators to choose the most optimum propulsion system. In this study, thermodynamic cycle analysis has been performed on two type of LNG Re-liquefaction system which was designed and adopted for the Q-Flex(216,000$m^3$) and Q-Max(266,000$m^3$) LNG carrier under construction at Korea ship yards and variable key factor was simulated to compare efficiency, power and nitrogen consumption of each Re-liquefaction system.

Comparative Study on the Estimation of CO2 absorption Equilibrium in Methanol using PC-SAFT equation of state and Two-model approach. (메탄올의 이산화탄소 흡수평형 추산에 대한 PC-SAFT모델식과 Two-model approach 모델식의 비교연구)

  • Noh, Jaehyun;Park, Hoey Kyung;Kim, Dongsun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.136-152
    • /
    • 2017
  • The thermodynamic models, PC-SAFT (Perturbed-Chain Statistical Associated Fluid Theory) state equation and the Two-model approach liquid activity coefficient model NRTL (Non Random Two Liquid) + Henry + Peng-Robinson, for modeling the Rectisol process using methanol aqueous solution as the $CO_2$ removal solvent were compared. In addition, to determine the new binary interaction parameters of the PC-SAFT state equations and the Henry's constant of the two-model approach, absorption equilibrium experiments between carbon dioxide and methanol at 273.25K and 262.35K were carried out and regression analysis was performed. The accuracy of the newly determined parameters was verified through the regression results of the experimental data. These model equations and validated parameters were used to model the carbon dioxide removal process. In the case of using the two-model approach, the methanol solvent flow rate required to remove 99.00% of $CO_2$ was estimated to be approximately 43.72% higher, the cooling water consumption in the distillation tower was 39.22% higher, and the steam consumption was 43.09% higher than that using PC-SAFT EOS. In conclusion, the Rectisol process operating under high pressure was designed to be larger than that using the PC-SAFT state equation when modeled using the liquid activity coefficient model equation with Henry's relation. For this reason, if the quantity of low-solubility gas components dissolved in a liquid at a constant temperature is proportional to the partial pressure of the gas phase, the carbon dioxide with high solubility in methanol does not predict the absorption characteristics between methanol and carbon dioxide.