• Title/Summary/Keyword: Rate of penetration

Search Result 873, Processing Time 0.036 seconds

Rate Capability of Electric Double-Layer Capacitor (EDLC) Electrodes According to Pore Length in Spherical Porous Carbons

  • Ka, Bok-H.;Yoon, Song-Hun;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.4
    • /
    • pp.252-256
    • /
    • 2007
  • A series of spherical porous carbons were prepared via resorcinol-formaldehyde (RF) sol-gel polymerization in the presence of cationic surfactant (CTAB, cetyltrimethylammonium bromide), wherein the carbon sphere size was controlled by varying the CTAB introduction time after a pre-determined period of addition reaction (termed as "pre-curing"). The sphere size gradually decreases with an increase in the pre-curing time within the range of 30-150 nm. The carbons possess two types of pores; one inside carbon spheres (intra-particle pores) and the other at the interstitial sites made by carbon spheres (inter-particle pores). Of the two, the surface exposed on the former was dominant to determine the electric double-layer capacitor (EDLC) performance of porous carbons. As the intra-particle pores were generated inside RF gel spheres by gasification, the pore diameter was similar for all these carbons, thereby the pore length turned out to be a decisive factor controlling the EDLC performance. The charge-discharge voltage profiles and complex capacitance analysis consistently illustrate that the smaller-sized RF carbons deliver a better rate capability, which must be the direct result of facilitated ion penetration into shorter pores.

The Study for the Method of Network Security Domain Architecture Designing (네트워크 보안도메인 아키텍처 설계방법 연구)

  • Noh, Si-Choon
    • Journal of Digital Contents Society
    • /
    • v.8 no.2
    • /
    • pp.165-171
    • /
    • 2007
  • The penetration of malicious code and the function of security blocking are performed on the same course of traffic pathway. The security domain is the concept to distinguish the domain from the group handling with the traffic on the structure of network which is performed with the function of penetration and security. The security domain could be different from the criterion of its realm and function, which requires the development and the application of security mechanism for every domain. For the establishment of security domain it is needed to show what criterion of net work should be set up. This study is to research the criterion for topology factor, security domain. structure map selection, and blocking location and disinfection net. It is shown to increase the effective rate blocking the virus with the proposed method in this paper rather than the traditional network architecture. The purpose of this paper is to suggest the necessity of development of security mechanism and the distinguished blocking function according to the level of security domain.

  • PDF

Effect of Zirconia Addition on Mechanical Properties of Spinel/Zirconia-glass Dental Crown Composites Prepared by Melt-infiltration (용융침투법으로 제조한 인공치관용 스피넬/지르코니아-유리 복합체의 기계적 특성에 미치는 지르코니아 첨가효과)

  • Lee, Deuk-Yong;Kim, Byung-Soo;Jang, Joo-Wung;Lee, Myung-Hyun;Park, Il-Seok;Kim, Dae-Joon
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1028-1034
    • /
    • 2002
  • Spinel/zirconia-glass composites prepared by melt-infiltration were fabricated to investigate the effect of zirconia addition on mechanical and optical properties of the composites. The infiltration distance was parabolic with respect to time as described by the Washburn equation and the penetration rate constant, K, decreased due to the reduction in pore size as the amount of zirconia rose. Although the optimum strength(308 MPa) of the Spinel/zirconia-glass composites was observed when the zirconia was added up to 20 wt%, K and transmittance decreased as the zirconia content rose. In conclusion, it suggested that the positive effect of strength as a result of the addition of zirconia was not effective.

Optimal Clustering of Energy Storage System for Frequency Regulation Service Considering Life Degradation (수명감소를 고려한 주파수 조정용 에너지저장장치의 최적 클러스터링)

  • Kim, Wook-Won;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.555-560
    • /
    • 2016
  • Recently, many countries have placed great attention on energy security and climate changes. Governments are promoting the construction of renewable energy projects with regulatory support in Korea. Despite an increasing penetration of renewable resources, however, the photovoltaic and wind power are underutilized due to the endemic problems such as difficulties of output control and intermittent output. The Energy Storage System (ESS) is proposed as a good solution for solving the problems and has been studied in both the private business and the government. However, because of inefficient aspects, the research has been carried out for improving high costs and a small capacity. In addition, the ESS is currently installed for using only one purpose which is frequency regulation or transmission congestion relief such that has an economic limitation. Therefore, methods which are becoming economically justifiable to increase the penetration of the ESS is required. Thus, this paper presents in terms of operation efficiency to improve economic feasibility of the ESS currently used. mainly, there are two aspects for the operation efficiency. Firstly, it is intended to improve the utilization rate through a process that can utilize the ESS for various purposes. It is necessary to be able to use for other purposes by classifying and clustering for increasing the efficiency of availability. The clustering method is proposed to conduct the grouping the ESS. Especially, it is proposed to utilize ESS for frequency regulation service which is the one of ancillary services in the power system. Through case studies, it is confirmed to secure the necessary resources by clustering small size ESS.

Reliability Evaluation of a Microgrid Considering Its Operating Condition

  • Xu, Xufeng;Mitra, Joydeep;Wang, Tingting;Mu, Longhua
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.47-54
    • /
    • 2016
  • Microgrids offer several reliability benefits, such as the improvement of load-point reliability and the opportunity for reliability-differentiated services. The primary goal of this work is to investigate the impacts of operating condition on the reliability index for microgrid system. It relies on a component failure rate model which quantifies the relationship between component failure rate and state variables. Some parameters involved are characterized by subjective uncertainty. Thus, fuzzy numbers are introduced to represent such parameters, and an optimization model based on Fuzzy Chance Constrained Programming (FCCP) is established for reliability index calculation. In addition, we present a hybrid algorithm which combines scenario enumeration and fuzzy simulation as a solution tool. The simulations in a microgrid test system show that reliability indices without considering operating condition can often prove to be optimistic. We also investigate two groups of situations, which include the different penetration levels of microsource and different confidence levels. The results support the necessity of considering operating condition for achieving accurate reliability evaluation.

Proteomics in Insecticide Toxicology

  • Park, Byeoung-Soo;Lee, Sung-Eun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.11-18
    • /
    • 2007
  • Mechanisms of insecticide resistance found in insects may include three general categories. Modified behavioral mechanisms can let the insects avoid the exposure to toxic compounds. The second category is physiological mechanisms such as altered penetration, rapid excretion, lower rate transportation, or increased storage of insecticides by insects. The third category relies on biochemical mechanisms including the insensitivity of target sites to insecticides and enhanced detoxification rate by several detoxifying mechanisms. Insecticides metabolism usually results in the formation of more water-soluble and therefore more readily eliminated, and generally less toxic products to the host insects rather than the parent compounds. The representative detoxifying enzymes are general esterases and monooxygenases that catalyze the toxic compounds to be more water-soluble forms and then secondary metabolism is followed by conjugation reactions including those catalyzed by glutathione S-transferases (GSTs). However, a change in the resistant species is not easily determined and the levels of mRNAs do not necessarily predict the levels of the corresponding proteins in a cell. As genomics understands the expression of most of the genes in an organism after being stressed by toxic compounds, proteomics can determine the global protein changes in a cell. In this present review, it is suggested that the environmental proteomic application may be a good approach to understand the biochemical mechanisms of insecticide resistance in insects and to predict metabolomic changes leading to physiological changes of the resistant species.

Spray Characteristics of Diesel Fuel in a Cylinder under Cryogenic Intake Air Temperature Conditions (극저온의 흡기 온도 조건에서 실린더 내 디젤 연료의 분무 특성)

  • Min, Se Hun;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.26 no.1
    • /
    • pp.18-25
    • /
    • 2021
  • The objective of this study is to investigate the effect of cryogenic intake air temperature on the injected fuel droplet behavior in a compression ignition engine under the different start of energizing timing. To achieve this, the intake air temperatures were changed from -18℃ to 18℃ in steps of 9℃, and the result of fuel evaporation rate, Sauter mean diameter, and equivalence ratio distributions were compared. When the intake air temperature decreased in steps of 9℃, less fuel was evaporated by about 3.33% because the cylinder temperature was decreased. In addition, the evaporated fuel amount was increased with retarding the start of energizing timing because the cylinder temperature raised. However, the difference was decreased according to the retarded start of energizing timing because the cylinder pressure was also increased at the start of fuel injection. The equivalence ratio was reduced by 5.94% with decreasing the intake air temperature. In addition, the ignition delay was expected to longer because of the deteriorated evaporation performance and the reduced cylinder pressure by the low intake air temperature.

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.

An Experimental Study on the Engineering Characteristics of Ternary Lightweight aggregate Mortar Using Recycling Water (회수수를 사용한 3성분계 경량 골재 모르타르의 공학적 특성에 관한 실험적 연구)

  • Lee, Jae-In;Bae, Sung-Ho;Kim, Ji-Hwan;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This study uses the recovered water as mixing water and artificial lightweight aggregate pre-wetting water as part of a study to increase the recycling rate and reduce greenhouse gas of the ready-mixed concrete recovered during the concrete transport process, and cement fine powder of blast furnace slag(BFS) and fly ash(FA). The engineering characteristics of the three-component lightweight aggregate mortar used as a substitute were reviewed. For this purpose, the flow, dry unit mass, compressive strength, drying shrinkage, neutralization depth, and chloride ion penetration resistance of the three-component lightweight aggregate mortar were measured. When used together with the formulation, when 15 % of BFS and 5 % of FA were used, it was found to be positive in improving the compressive strength and durability of the mortar.

A Study of Injection and Combustion Characteristics on Gasoline Direct Injection in Constant Volume Chamber (정적 연소기 내 가솔린 직접 분사 시 분무 및 연소특성에 관한 연구)

  • Kim, Kyung-Bae;Kang, Seok-Ho;Park, Gi-Young;Seo, Jun-Hyeop;Lee, Young-Hoon;Kim, Dae-Yeol;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.113-120
    • /
    • 2012
  • It is being more serious problems that the pollutant and the greenhouse gas emitted from the internal combustion engines due to the increasing demand of automobiles. To counteract this, as one of the ways has been studied, GDI type engine, which is directly injected into the combustion chamber and burns by a spark ignition that chose the merits of both gasoline engine and diesel engine, was appeared. The combustion phenomena in this GDI engine is known to contribute to combustion stability, fuel consumption reduction and reductions of harmful substances of exhaust gas emission, when the fuel spray of atomization being favorable and the mixture formation being promoted. Accordingly, this study analyzed the affection of ambient temperature and fuel injection pressure to the fuel by investigate the visualization of combustion, combustion pressure and the characteristic of emission, by applying GDI system on the constant combustion chamber. As a result, as the fuel injection pressure increases, the fuel distribution in the combustion chamber becomes uniform due to the increase of penetration and atomization. And when ambient temperatures in the combustion chamber become increase, the fuel evaporation rate being high but the penetration was reduced due to the reduction of volume flux, and confirmed that the optimized fuel injection strategy is highly needed.