• Title/Summary/Keyword: Rate of growth

Search Result 12,509, Processing Time 0.046 seconds

The Biocompatibility Of Cultured Bone Marrow Cells And Gingival Fibroblasts On The Titanium Surfaces (티타늄 배양에 대한 배양골수와 치은 섬유아세포의 생체적합성)

  • Oh, Choong-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Lee, Man-Sup
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1996
  • The purpose of this study was to evaluate the response in aspect of attachment and growth rate of osteoblasts and growth rate of osteoblasts and human gingival fibroblasts to the commercially pure titanium(CP titanium)and titanium alloy(Ti-6AI-4V) that are used widely as implant materials, and to obtain the basic information to ideal implant materials. In the studly, commercially pure titanium in first test group, titanium alloy(Ti-6AI-4V) in second test group, cobalt-chrome-molybdenum alloy(Co-Cr-Mo alloy) in positive control group, and tissue culture polystyrene plate in negative control group were used. The results of this study were as follows. 1. Bone marrow cells cultured on CP titanium and Ti-6Al-4V showed significantly greater attachment and growth rate(p(0.05) compared to Co-Cr-Mo alloy in each time. 2. There were no significant differences(p>0.05) in attachment and growth rate of bone marrow cells cultured on CP titanium and Ti-6AI-4V or tissue culture plate. 3. Most bone marrow cells cultured on CP titanium, Ti-6Al-4V and tissue culture plate were attached well to each substratum in first 2days, and then, grew at higher growth rate. On the other hand, some cells cultured on Co-Cr-Mo alloy failed to attach in first 2 days, and then, attached cells grew at lower growth rate than other groups. 4. Attachment and growth rates of gingival fibroblasts cultured on CP titanium and Ti-6Al-4V showed no significant differences(p>0.05) compared to Co-Cr-Mo alloy in 2 days, but significantly greater increase(p<0.05) in 5 and 9 days. 5. There were no significantly differences(p>0.05) between growth rates on gingival fibroblasts cultured on CP titanium, Ti-6Al-4V and tissue culture plate in 2 and 5days, but a significant lower growth rate(p<0.05) on CP titanium and Ti-6Al-4V versus tissue culture plate. 6. Some gingival fibroblasts cultured on all specimen groups failed to attach, but attached cells grew well, especially on CP titanium, Ti-GAl-4V and tissue culture plate. 7. There were no significant differences(P>0.05) between growth rates of both bone marrow cells and gingival fibroblasts cultured on CP titanium and Ti-6AI-4V. As a result of this study, both commercially pure titanium and Ti-6AI-4V showed excellent biocompatibility and there was no significant difference in the cellular response to the both metals. Bone marrow cells cultured on each substratum showed significantly greater growth rate and responded sensitively to cytotoxic effects of metal surfaces compared to gingival fibroblasts. Considering cell response to the substrate, it was likely that the composition itself of titanium metals have no significant effect on the biocompatibility. Further study need to be done to evaluate the influence of surface characteristics on cellular responses.

  • PDF

Influence of Growth Rate on Biosorption of Heavy Metals by Nocardia amarae

  • Kim, Dong Wook;Daniel K. Cha;Hyung-Joon Seo;Jong Bok Bak
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.878-881
    • /
    • 2002
  • The goal of the current research was to assess the influence of the growth rate of Nocardia amarae on its overall metal binding capacity. Batch sorption isotherms for cadmium (Cd), copper (Cu), and nickel (Ni) showed that Nocardia cells harvested from chemostat cultures at a dilution rate of $0.33d^-1$ had a significantly higher metal sorption capacity than cells grown at 0.5 and $1d^-1$. The cell surface area estimated using a dye technique indicated that pure N. amarae cells grown at a lower growth rate had a significantly more specific surface area than cells harvested from a higher growth rate operation. Accordingly, this difference in the specific surface area seemed to indicate that the higher metal sorption capacity of the slowly growing Nocardia cells was due to their higher specific surface area.

Predictions of zinc selenide single crystal growth rate for the micro gravity experiments

  • Kim, Geug-Tae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.226-232
    • /
    • 2004
  • One predicts the crystal growth rate of ZnSe with a low vapor pressure system in a horizontal configuration based on one dimensional advection-diffusion and two-dimensional diffusion-convection model. The present results show that for the ratios of partial pressures, s = 0.2 and 2.9, the growth rate increases with the temperature differences between the source and crystal. As the ratio of partial pressure approaches the stoichiometric value, s = 2 from s = 1.5 (zinc-deficient case: s < 2) and 2.9 (zinc-rich case: s > 2), the rate increases sharply. For the ranges from 1.5 to 1.999 (zinc-deficient case: s < 2) and from s = 9 to 2.9 (zinc-rich case: s > 2), the rate are slightly varied. From the viewpoint of the order of magnitude, the one-dimensional model for low vapor pressure system falls within the 2D predictions, which indicates the flow fields would be advective-diffusive. For the effects of gravitational accelerations on the rate, the gravitational constants are varied from 1 g to $10^{-6}$ g for $\Delta$T = 50 K and s = 1.5, the rates remain nearly constant, i.e., 211 mg/hr, which indicates Stefan flow is dominant over convection.

The Effect of Hybridoma Growth Rate on the Production of Monoclonal Antibodies (하이브리도마 세포의 증식속도와 단일클론 항체의 생산)

  • 최태부;조보연
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.31-33
    • /
    • 1989
  • The effect of growth rate change on glucose consumption and Ammonia production rate in batch culture of hybridoma was studied. The methods regulating growth rate of hybridoma were 1) decrease of serum concentration, 2) decrease of culture temperature and 3) addition of growth inhibitor (thymidine). The experimental results showed that hybridoma growth rate was dropped by 20~50%, while glucose consumption and ammonia production rate was decreased up to 40% On the other hand, the final concentration of monoclonal antibody was shown to be increased as high as 100% when the concentration of serum was decreased from 2% to 0.2%.

  • PDF

Growth and Survival Rate on Density of Haliotis discus hannai in Cnge Culture (해상가두리에서 참전복 (Haliofis discus hannai)의 사육밀도에 따른 성장과 생존율)

  • YOON Ho Seop;RHA Sung Ju;CHA Yong Back;CHO Ju Hyun;KIM Ki Young;CHOI Sang Duk
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • Effect of growth and survival rate on different densities in the cage culture of juvenile abalone (Haliotis discus hannai) were determined in Myoduri Yeosu, Jeollanamdo from April 2000 to April 2001. The shell length growth was conducted using $32.35{\pm}1.35$ mm abalone juveniles for 374 days at densities $15{\%}\;(230\;indv./m^{2}),\;30{\%}\;(460\;indv./m^{2}),\;45{\%}\;(690 \;indv./m^{2}),\;60{\%}\;(920\;indv./m^{2})$. The result showed that the hightest growth rate was observed in lowest $(15{\%})$ density experimental group. Survival rate of Juvenile abalone was the highest in $15{\%}$\; density group and lowest in $45{\%}$ density group and distribution rate of shell length showed the highest as $30{\%}\;in\;230\;indv./m^{2}\;(15{\%})$ group.

Biodegradation Rate of Recycling Soap Prepared from Non-Cooking Oils (폐식용유로 제조된 재생비누의 생분해 속도)

  • 신춘환;김희숙;허근태
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.83-91
    • /
    • 1996
  • A recycling soap was prepared from non-cooking oils. The effects of physlcal and chemical properties of the recycling soap on biodegradation are expected to be different due to the thermal histories of the non-cooking oils. Therefore, the biodegradation rate of the recycling soap was studied by using Klebssella Pneumoniae(K. pneumoniae), and the growth rate of K. pnewoniae in soap solution was observed. The biodegradation rate of the recycling soap appeared to be slower as the thermal histories of the non-cooking oils became larger. This might be resulted from hydrolysis, in which the ester bonds in the oils are broken to produce hydroxyl group. It was also observed that the growth rate of the microorganism decreased with the increase in the thermal histories of the oils. As a result, it is desired that recycling soap should be produced from the non-cooking oils with the prober ranges of thermal histories to reduce water contamination. The non-cooking oils with larger thermal histories are considered to be recycling through the cracking process before used. Key Words : non-cooking oils, recycling soap, thermal history, biodegradation, microorganism growth.

  • PDF

Effects of Oxygen Addition on the Growth Rate and Crystallinity in Diamond CVD (다이아몬드 CVD에서 산소혼입이 증착속도 및 결정성에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.401-411
    • /
    • 1990
  • Deposition of diamond films on Si(100) from the mixtures of methane and hydrogen were investigated using hot W filament CVD method. The nucleation density could be increased thousandfold by surface treatment with SiC powder. Upon oxygen addition to the mixture, crystal facets became developed more clearly by selectively removing non-diamond carbons, but the film growth rate generally decreased. However, at a very high methane content(e.g. 10%), a small amount of oxygen addition has resulted in an increase in the film deposition rate presumably by promotion of methane decomposition. When the gas pressure was varied, the growth rate exhibited a maxiumum at around 20torr and the film crystallinity steadily improved with the pressure increase. The observed variation of the growth rate by oxygen addition was discussed in terms of its role in the pyrolysis and the subsequent gas phase reactions.

  • PDF

Effects of Gas Flow Variables on the Crystal Growth of Diamond in Hot Filament-Assisted CVD (고온 필라멘트 다이아몬드 CVD에서 기체유동변수가 결정성장에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.1
    • /
    • pp.88-96
    • /
    • 1994
  • Hot filament-assisted CVD was carried out to deposit diamond films on Si(100) substrate at 90$0^{\circ}C$ using a 1% CH4-H2 mixture gas. Deposition was made at various conditions of mass flow rate of the feed gas (30~1000 sccm), pressure (2.5~300 Torr), and filament-substrate distance (4~15 mm), and the deposited films were characterized by SEM, XRD, and Raman spectroscopy. As the flow rate increases, the growth rate also increased but the crystallinity of the film was degraded. A longer filament-substrate distance simply caused both the growth rate and the crystallinity to become poorer. On the other hand, the pressure variation resulted in a maximum growth rate of 2.6 ${\mu}{\textrm}{m}$/hr at 10 Torr and the best film quality around 50 Torr, exhibiting an optimum condition. The observed trends were interpreted in terms of the flow velocity-dependent pyrolysis reaction efficiency and mass transport through the boundary layer.

  • PDF

Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz (27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구)

  • Lee, Kise;Kim, Sunkue;Kim, Sunyoung;Kim, Sangho;Kim, Gunsung;Kim, Beomjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

Effects of Angelica sinensis Root on Longitudinal Bone Growth Rate in Adolescent Female Rats

  • Lee, Donghun;Kim, Hocheol
    • The Korea Journal of Herbology
    • /
    • v.32 no.1
    • /
    • pp.69-74
    • /
    • 2017
  • Objectives : This study aimed to investigate the effects of Angelicae sinensis Radix on longitudinal bone growth rate in rats. We have screened traditional medicinal herbs to develop the longitudinal bone growth stimulator by well-established rat model. A. sinensis was identified as one of the effective herbs in the screening process. Methods : Adolescent female rats were administered A. sinensis at doses of 30 mg/kg and 300 mg/kg for 10 consecutive days. To observe the rate of longitudinal bone growth, tetracycline was injected intraperitoneally on day 8 to stain a fluorescent band on the anew formed bone. To elucidate the mode of action, we observed insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) expression after A. sinensis administration in growth plate. Results : In the 300 mg/kg A. sinensis group, the length between the proximal endpoint of the tetracycline label and the division line between growth plate and bone was significantly increased compared with vehicle-treated control group. Height of the proximal tibial growth plate was higher in the A. sinensis group compared with control group. A. sinensis also upregulated the expressions of IGF-1 and BMP-2 in the proliferative zone and hypertrophic zone of the proximal tibial growth plate. Conclusions : A. sinensis increases longitudinal bone growth rate in rats. According to immunohistochemistry, A. sinensis increases local IGF-1 and BMP-2 expressions in the growth plate which can be considered as direct stimulation of GH on the local growth plate.