• Title/Summary/Keyword: Rate of Size

Search Result 8,731, Processing Time 0.034 seconds

Filtration Rates of Juvenile Purple Clam, Saxidomus purpuratus (Sowerby) Feeding on Red Tide Dinoflagellates

  • Lee, Chang-Hoon;Moon, Seong-Dae;Sung, Chan-Gyoung
    • The Korean Journal of Malacology
    • /
    • v.28 no.4
    • /
    • pp.349-359
    • /
    • 2012
  • The purpose of this study is to compare the clearance rate (CR) and intake rate (IR) of juvenile purple clam, Saxidomus purpuratus when feeding on different unialgal diet of red tide dinoflagellates (RTDs), and to know what is the most important cell characteristic of RTDs to cause the differences in feeding parameters. Experiments were performed to measure the CR and IR of juvenile S. purpuratus as a function of algal concentration when food was either the standard food, Isochrysis galbana or one of 9 RTDs. Patterns of CR with increasing algal concentration were similar among different RTDs. The highest $C_{max}$ was observed when S. purpuratus was feeding on A. affine, while the lowest on C. polykrikoides. The patterns of IR with increasing algal concentration were also similar among different RTDs. However, there were great differences in the maximum value of IR ($I_{max}$) among different RTDs. The highest $I_{max}$ was observed when S. purpuratus was feeding on A. carterae, while the lowest on G. catenatum. Some RTDs similar in size showed different $C_{max}$. Other RTDs different in size showed similar $I_{max}$. Life form of each RTD affected significantly the $I_{max}$, which was higher for single-celled RTDs than chain-forming RTDs. There were no significant differences in feeding parameters between toxic and nontoxic RTDs. Moreover, a toxic dinoflagellate, A. carterae recorded the highest $I_{max}$ among RTDs. The most important characteristic of RTD as a factor affecting the feeding rate of S. purpuratus was life form, not size or toxicity of RTD species.

A Study on the Sizing System for the Middle Aged Women's Clothing (중년여성 기성복의 치수체계에 관한 연구)

  • 최혜선
    • Journal of the Korean Home Economics Association
    • /
    • v.33 no.1
    • /
    • pp.187-202
    • /
    • 1995
  • The purpose of the study was to suggest ways of improvement of the present sizing systems for the middle aged women's clothing. For this, a questionnaire survey for the aged group and calculating coverage rate of one garment item(suit) between the companies has been carried out. The data was analyzed with use of SPSS package. The statistics were based o frequency, X2-test, t-test and one-way ANOVA. The results of the study was as follows: 1. In case of survey for middle aged women, the problems concerning the length and abdominal girth were found, that is to say, the former too long and the latter too tight. 2. The sizing systems between companies were very different in size classification and standard deviation of each sizes. 3. In calculating coverage rate of the 10 companies's sizing systems, coverage rate of the smallest size in each were the highest and those of the biggest were 0%. It means the standard deviation of the present sizing systems are not enough to cover the various body form of the middle aged women, so that the more diverse sizing system is required for the better fitness of middle aged women's clothing.

  • PDF

Effects of Metallic Parameters for Distribution of Fatigue Crack Growth Rate - Dependence of Grain Size -; (피로크랙진전속도의 분포에 대한 금속학적 인자의 영향 - 결정입자 의존성 -)

  • Yoon, Han-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2141-2147
    • /
    • 1996
  • The strength of material is scattered owing to the inhomogenity of microstructure, in spite of the same material. Therefore, in order to design the mechanical structure with the reliability engineering, it is important to grasp the statistical nature of material strength. In this paper, effects of grain sezes for the statistical nature of the fatigue crack growth was discussed. And the statistical nature of mechanical properties was compared with the statistical nature of the fatigue crack growth rate.

THE PARTICLE SIZE EFFECT ON COMBUSTION BEHAVIOR OF CELLULOSE INSULATION

  • Choi, Jeong-Hwa;Kim, Hong;Ryu, Kyong-Ok
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.185-192
    • /
    • 1997
  • The combustion of cellulose insulation treated with Borax, Boric acid and Aluminum Sulfate as combustion retardants is examined by candle type combustion tester. The cellulose fibers in cellulose insulation are classified by diameter as less than 0.2mm, 0.2mm-0.5mm, 0.5mm-2mm and more than 2mm. The burning behavior of cellulose insulation are studied by LOI (Limit Oxygen Index: Beginning point of smoldering), L- point (Lower point of combustion transition from smoldering- flaming to flaming combustion), LOI, L-point and H-point rise with the increasing particle size of cellulose fibers because thermal decomposition rate of cellulose fiber decreases. The phenomena of combustion transition from smoldering to flaming combustion are determined by the generating rate of combustible gas and the formation rate of combustible gas mixture within the zone of cellulose fiber heated.

  • PDF

Residence Time Effect on the Growth of ZrC by Low Pressure Chemical Vapor Deposition (저압화학기상증착법을 이용한 ZrC 성장에 잔류시간이 미치는 영향)

  • Park, Jong-Hoon;Jung, Choong-Hwan;Kim, Do-Jin;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.5
    • /
    • pp.280-284
    • /
    • 2008
  • In order to investigate residence time effect on the growth of ZrC film, the ZrC films grew with various system total pressure (P) and total flow rate (Q) by low pressure chemical vapor deposition because residence time is function of system total pressure and total flow rate. Thermodynamic calculations predict that the decomposition of source gases ($ZrCl_4$ and $CH_4$) would be low as increasing the residence time. Thermodynamic calculations results were proved by investigating deposition rate with various residence time. Deposition rate decreased with residence time of source gas increased. Besides, depletion effect accelerated diminution of deposition rate at high residence time. On the other hands, the deposition rated was increased as decreasing the residence time because fast moving of intermediate gas species decrease the depletion effect. The crystal structure was not changed with residence time. However, the largest size of faceted grain showed up to specific residence time and the size of grain was decreased whether residence time increase or not.

An Experimental Study on the Heat and Mass Transfer of Adsorption Chiller (흡착식 냉동기의 열 및 물질전달에 관한 실험적 연구)

  • Kwon Oh-Kyung;Yun Jae-Ho;Joo Young-Ju;Kim Yong-Chan;Kim Joung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.746-753
    • /
    • 2005
  • Adsorption chillers have been receiving considerable attentions as they are energy-saving and environmentally benign systems. In order to evaluate adsorption rates, experiments were performed in the batch type adsorption apparatus. Three types of silica gels were investigated under an assortment of experimental conditions that are representatives of the actual operating environments in the adsorber of adsorption chillers. Experimental results revealed the effects of silica gel particle size, bed temperature, and fin pitch of fin tube on the adsorption rate. The $0.25\~1.18mm$ particle size of silica gel with high adsorption rate was selected as a suitable adsorbent. The measured adsorption rate became bigger with decreasing particle size. From the comparison of adsorption rate, it is found that the fin tube has about $21\%$ higher value than that of the bare tube. The effect of heat and mass flux is found to be more significant in the fin tube than in the bare tube.

Foaming Characteristics and Physical Properties of Ethylene Vinyl Acetate Copolymer Foams (Ethylene Vinyl Acetate Copolymer 발포체의 발포특성 및 물리적 특성)

  • Kim, Jin-Tae;Son, Woo-Jung;Ahn, Byung-Hyun;Kim, Won-Ho
    • Elastomers and Composites
    • /
    • v.36 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • Physical properties of foams depend on the density of foams, Physical properties of base polymers, open ceil contents, and cell structures including the size, size distribution, shape of ceil and the thickness of membrane and strut. The density of foam is affected by raw materials, concentration oi crosslinking agent and blowing agent and process parameters such as processing technique and condition. Ethylene vinyl acetate copolymer(EVA) foam is a crosslinked cellular material. The foaming characteristics and physical properties of EVA foam are affected by decomposition rate of blowing agent. In this study, the decomposition rate of blowing agent and crosslinking rate, foaming characteristics and physical properties of foams were evaluated. The slow decomposition rate of blowing agent results in low density foam, good shock absorption property and uniform cell size distribution compared to the high decomposition rate of blowing agent.

  • PDF

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

Control of Size, Morphology and Crystalline Phase of Nanoparticles Using $CO_2$ Laser Irradiation ($CO_2$ 레이저 조사를 이용한 나노 입자의 크기, 형상과 결정상의 제어)

  • Lee, Dong-Geun;Choi, Man-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.180-185
    • /
    • 2000
  • Nano crystalline or non-crystalline particles have been widely used in various industrial area, such as ceramics, catalysis, electronics, metallurgy and optic device. In all applications, synthesizing the particles as small as possible and controlling the crystalline phase according to its purpose are necessary for the enhancement of processing performance. In some cases, non-agglomerated particles may be necessary for solving the packing problems. This motivates our attempt of controlling size, morphology, phase of nano titania and silica particles. If one can enhance sintering rate of small aggregates independently of collision rate, one may expect that original aggregates can be changed into volume equivalent spheres and thereby the decrease of collision frequency due to the change leads to much smaller rate of growth of the particles. This is the basic idea of our control strategy.

  • PDF

Microwave Drying of Food Waste (음식물 쓰레기의 마이크로파 건조)

  • 김덕찬;현준호;변자진;이동원;문경환
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.133-140
    • /
    • 1998
  • The food wastes from a refectory and an eating house were heated in domestic microwave oven(700W) equipped with a fan and the drying rates and destruction of microorganisms were investigated. The drying rate was decreased with the size of food waste and the food wastes in polypropylene basket were dried faster than that on glass dish. The rate was increased with lower initial moisture content. Death rate of microorganisms was also decreased with the size of food waste. Ninety eight percent of reduction in viable cell numbers for the 400g of food waste could be achieved in 240sec of microwave irradiation. The growth of microorganisms in food wastes after microwave irradiated was observed at $32^{\circ}C$ and 95% relative humidity after 7days and the cell numbers in microwave irradiated food wastes were found to be 1/2 ~ 1/20 of the numbers in untreated wastes in accordance with the mass and the length of exposed time to microwave. To minimize the moisture and microorganisms in food wastes, the use of microwave oven are recommended.

  • PDF