• Title/Summary/Keyword: Rate of Heat Release

Search Result 666, Processing Time 0.023 seconds

Active components delivery rate from acrylic resin maxillary surgical obturator: Part I

  • Al-Kaabi, Arshad;Hamid, Mohammed A.
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.109-114
    • /
    • 2020
  • The purpose of this study was to observe the trend of compounds release from acrylic resin oral prosthesis when used for drug delivery as well as a restoration. In this study, 10 specimens of heat-cured polymethylmethacrylate material were prepared and loaded with methylene blue biological stain. The specimens were then submerged in vials with 5 ml distilled water for 24 hours. The extraction procedure continued for 4 days, each day the specimens were immersed in another 5 ml distilled water vial. All extracted solutions were analyzed by visible light spectroscopy for absorbance comparison. The statistical results showed that the absorbance values were significantly different in the first day of extraction than the following days. However, there was no statistical difference among the 2nd, 3rd and 4th days of extraction. Biological stain loading to acrylic resin at the mixing stage, and then after extraction in distilled water, showed a burst release during the first day followed by a constant release during the following few days.

Evaluation of Methyl Methacrylate-Butyl Methacrylate Copolymer Films and Kinetics of Nitrofurazone Release (메칠메타크릴레이트-부틸메타크릴레이트 공중합체 필름의 평가 및 니트로푸라존 방출의 속도론적 연구)

  • Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.3
    • /
    • pp.111-126
    • /
    • 1987
  • Methyl methacrylate-butyl methacrylate copolymer (MMBM)-dibutyl phthalate (DBP) films were investigated as a potential topical drug delivery system for the controlled release of nitrofurazone. The kinetic analysis of release data indicated that drug release followed a diffusion-controlled granular matrix model, where the quantity released per unit area is proportional to the square root of time. DBP of several hydrophobic plasticizers selected was found to give the highest release of nitrofurazone. However, hydrophilic plasticizers such as propylene glycol and polyethylene glycol 400 had no controlled release properties and acceptable film formation. The effects of changes in film composition, drug concentration, film thickness, pH of release medium, and temperature on the in vitro release of nitrofurazone were analyzed both theoretically and experimentally. The release rate constant (k') was found to be proportional to DBP content, pH, and the temperature of release medium, but independent of film thickness, and drug concentration in a range of 0.1-0.4% by weight. The linear relationship was found to exist between the log k' and DBP content. The release of nitrofurazone from MMBM-DBP (8:2) films was found to be an energy-linked process. Two energy terms were calculated ; the activation energy for matrix diffusion was 13.45 kcal/mole, and the heat of drug crystal solvation was 27.26-29.34 kcal/mole. Observation of scanning electron micrographs and microscopic photographs showed that the incorporation of DBP in films increased markedly the particle size of nitrofurazone dispersed in the film matrix, comparing with the fine dispersion of nitrofurazone in pure MMBM film alone.

  • PDF

A Study on the Application Scheme of Fire Identification Considering the Heat Release Rate Characteristics of Inflammable Material (가연물의 발열량 특성을 고려한 화재감식 적용방안에 관한 연구)

  • Kang, Jung-Ki;Oh, Jin-Hee;You, Woo-Jun;Ryou, Hong-Sun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.52-57
    • /
    • 2014
  • The present study suggests the fundamental method for the prediction time of the fire origin by analyzing the combustion phenomenon of inflammable material in the building structure. The heat release rate (HRR) with time variant is evaluated for the interphone as a inflammable material, which is opted from the fire incidents in the stairwell. the fire dynamics simulator (FDS ver. 6.1) is applied in order to analyze the difference of the smoke inflow time to the downstair from the fire event area with various fire pattern. The results show that the maximum inflow time difference for the case of the interphone made from ABS materials is about 4.93 times with the input conditions of heat flux values and the environment in the FDS for the fixed stairwell which composed of total volume $291.3m^3$, floorage $23.3m^2$ and the height of each floor 2.5 m. This research can be practical information for the application method of simulation scheme with experimental data to the fire Identification.

Foaming Properties and Flame Retardancy of the Foams Based on NBR/GTR Compounds (니트릴고무/타이어고무분말(GTR)를 이용한 발포체의 발포 및 난연 특성에 관한 연구)

  • Moon, Sung-Chul;Jo, Byung-Wook;Choi, Jae-Kon
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.159-169
    • /
    • 2002
  • The improvement of flame retardancy of the foams based on NBR/GTR compounds was conducted by formulating various materials i.e. NBR, GTR, inorganic and phosphorus containing flame retardants, foaming agent, cross-linking agent and activator. The foaming properties, morphology, smoke density and flame retardancy of the specimens were investigated using SEM, LOI tester, smoke density control system and cone calorimeter. The phosphorus containing flame retardant reduces heat release rate, increases the limiting oxygen index and a char formation. The inorganic flame retardant increases the limiting oxygen index and reduces heat release rate with an increased CO yield by char formation, and smoke suppressing effect. The formed char seemed to intercept the oxygen transport and heat transfer into the core area. When the composition ratios of the compounds of NBR/GTR were $100{\sim}80/0{\sim}20 wt.%$, and the ratios of the rubbers/flame retardants were $1/1.55{\sim}3.60 wt.%$, we could developed foams with low heat release rate, high limiting oxygen index($28.0{\sim}39.3$), closed or semi-closed cell of uniformity and reasonable expandability($225{\sim}250 %$).

Flame Retardant Properties of Basalt Fiber Reinforced Epoxy Composite with Inorganic Fillers (무기 필러가 첨가된 현무암섬유 강화 에폭시 복합재료의 난연 특성)

  • Mun, So Youn;Lee, Su Yeon;Lim, Hyung Mi
    • Composites Research
    • /
    • v.32 no.6
    • /
    • pp.368-374
    • /
    • 2019
  • Basalt fiber reinforced epoxy composites with inorganic filler (BFRP-F) such as Mg(OH)2 (magnesium hydroxide), Al(OH)3 (aluminum hydroxide), Al2O3 (aluminum oxide) and AlOOH (boehmite) were prepared by hand lay-up and hot pressing. The combustive properties of BFRP-F were improved comparing with basalt fiber reinforced epoxy composite (BFRP) without inorganic filler. At a 30 wt% resin content, the limited oxygen index (LOI) of BFRP is 28.9, which is higher than that of epoxy (21.4), and the LOI of BFRP-F is higher than that of BFRP. The BFRP-F showed the lower peak heat release rate (PHRR), total heat release (THR) and total smoke release rate (TSR) than those of BFRP. We confirmed that the flame retardant properties of the composite were improved by the addition of inorganic filler through the dehydration reaction and oxide film formation.

Simulation of the single-cylinder 2-stroke cycle compression ignition engine (단기통 2사이클 압축점화기관의 시뮬레이션)

  • 유병철;김정순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.62-74
    • /
    • 1986
  • The simulation of power cycle and unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 2-stroke cycle compression ignition engine was studied in this paper. In power cycle process, the single-zone model proposed by Whitehouse and Way was used, and the convective and radiative heat transfer from cylinder contents to surroundings was considered. To solve the equations for gas exchange process, the generalized method of characteristics including area change, friction, heat transfer and entropy gradients was used. Also with the path line calculation, the entropy change along the path line and the variation of specific heat due to the change of temperature and the composition of cylinder gas were considered. As a result of the simulation, the change of pressure and temperature in the cylinder against the crank angle, the rate of net heat release, and the change of properties at each point in the inlet and exhaust pipe against the crank angle were obtained. The engine performances under various operating conditions were also calculated.

  • PDF

Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame

  • Hwang, Sang-Soon;Gore, Jay-P
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1156-1165
    • /
    • 2002
  • The characteristics of combustion and radiation heat transfer of an oxygen-enhanced diffusion flame was experimentally analyzed. An infrared radiation heat flux gauge was used to measure the thermal radiation of various types of flames with fuel, air and pure oxygen. And the Laser Induced Incandescence (LII) technique was applied to characterize the soot concentrations which mainly contribute to the continuum radiation from flame. The results show that an oxygen-enhanced inverse diffusion flame is very effective in increasing the thermal radiation compared to normal oxygen diffusion flame. This seems to be caused by overlapped heat release rate of double flame sheets formed in inverse flame and generation of higher intermediate soot in fuel rich zone of oxygen-fuel interface, which is desirable to increase continuum radiation. And the oxygen/methane reaction at slight fuel rich condition (ø=2) in oxygen-enhanced inverse flame was found to be more effective to generate the soot with moderate oxygen availability.

A Correlation Study for the Prediction of the Maximum Heat Release Rate in Closed-Compartments of Various Configurations (다양한 형상의 밀폐된 구획에서 최대 열발생률 예측을 위한 상관식 검토)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • In a closed-compartment with various configurations, the correlation that can predict the maximum heat release rate (HRR) with the changes in internal volume and fire growth rate was investigated numerically. The volume of the compartment was controlled by varying the length ratio based on the bottom surface shape of the ISO 9705 fire room, where the ceiling height was fixed to 2.4 m. As a main result, the effect of a change in ceiling height on the maximum HRR was examined by a comparison with a previous study that considered the change in ceiling height. In addition, a more generalized correlation equation was proposed that could predict the maximum HRR in closed-compartments regardless of the changes in ceiling height. This correlation had an average error of 7% and a maximum error of 19% for various fire growth rates when compared with the numerical results. Finally, the applicability of the proposed correlation to representative fire compartments applied to the domestic performance-based design (PBD) was examined. These results are expected to provide useful information on predicting the maximum HRR caused by flashover in closed-compartments as well as the input information required in a fire simulation.

Experimental Study on Combustion Characteristics of Biodiesel Waste Cooking Oil in Marine Diesel Engine (선박디젤기관에서 바이오디젤 폐식용유의 연소특성에 대한 실험적 연구)

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.381-386
    • /
    • 2015
  • Environmental pollution and alternative energy has attracted increasing interest. The use of diesel engines is expected to increase in the world owing to their fuel economy. The problem of air pollution emissions from marine engines is causing a major concern in many areas. An alternative fuel was introduced as an environmentally friendly fuel to reduce the toxic emissions from conventional fossil fuels. Biodiesel fuel, which is a renewable energy is highlighted as environmentally friendly energy. This energy can be operated in regular diesel engines when it is blended with invariable ratios without making changes. In this study, a bio-diesel fuel was produced from waste cooking oil and applied to a marine diesel engine to examine the effects on the characteristics of combustion. Waste cooking oil contains a high cetane number and viscosity component, a low carbon and oxygen content. As a result, the brake specific fuel consumption was increased, and the cylinder pressure, rate pressure rise and rate of heat release were decreased.

The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill Operated in Continuous Recycling Mode

  • Mei Chow Yen;Ti Tey Beng;Ibrahim Mohammad Nordin;Ariff Arbakariya;Chuan Ling Tau
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.284-288
    • /
    • 2005
  • Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to $50\%$(w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of $20\%$(ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to $85\% (v/v)$. Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than $20\%(w/v)$ and 10 m/s, respectively.