• 제목/요약/키워드: Rate Classification

검색결과 2,246건 처리시간 0.028초

경항통 설문지를 이용한 한의학적 진단 및 분류체계에 관한 연구 (Research on Oriental Medicine Diagnosis and Classification System by Using Neck Pain Questionnaire)

  • 송인;이건목;홍권의
    • Journal of Acupuncture Research
    • /
    • 제28권3호
    • /
    • pp.85-100
    • /
    • 2011
  • Objectives : The purpose of this thesis is to help the preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the neck pain. Methods : Statistical analysis about Gyeonghangtong(頸項痛), Nakchim(落枕), Sagyeong(斜頸), Hanggang (項强) classified experts' opinions about neck pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis (LDA), diagonal linear discriminant analysis (DLDA), diagonal quadratic discriminant analysis (DQDA), K-nearest neighbor classification (KNN), classification and regression trees (CART), support vector machines (SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 84.47% in comparison with the original diagnosis. 2. High hit rate was shown when the test for three categories such as Gyeonghangtong and Hanggang category, Sagyeong caterogy and Nakchim caterogy was conducted. 3. The result analyzed by using DLDA has a hit rate of 58.25% in comparison with the original diagnosis. The result analyzed by using DQDA has a accuracy of 57.28% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 69.90% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 69.60% in comparison with the original diagnosis. There was a hit rate of 70.87% When the test of selected 8 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 80.58% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on neck pain generally turned out to have a significant result.

불균형 자료에 대한 분류분석 (Classification Analysis for Unbalanced Data)

  • 김동아;강수연;송종우
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.495-509
    • /
    • 2015
  • 일반적인 2집단 분류(2-class classification)의 경우, 두 집단의 비율이 크게 차이나지 않는 경우가 많다. 본 논문에서는 두 집단의 비율이 크게 차이나는 불균형 데이터(unbalanced data)의 분류 문제에 대해서 다루고자 한다. 불균형 데이터의 분류방법은 균형이 맞는 데이터(balanced data)의 경우보다 분류하기 어려운 경우가 많다. 이런 자료에서 보통의 분류모형을 적용하게 되면 많은 경우에 대부분의 관측치가 큰 집단으로 분류 되는 경우가 많은데 실질적인 어플리케이션에서는 이런 오분류가 손해가 더 큰 경우가 대부분이다. 우리는 sampling 기법을 이용하여 다양한 분류 방법론의 성능을 비교 분석 하였다. 또한 비대칭 손실(asymmetric loss)을 가정한 경우에 어떤 방법론이 가장 작은 loss를 생성하는 지를 비교하였다. 성능 비교를 위해서는 오분류율(misclassification rate), G-mean, ROC, 그리고 AUC(Area under the curve) 등을 이용하였다.

다양한 눈의 특징 분석을 통한 감성 분류 방법 (Emotion Classification Method Using Various Ocular Features)

  • 김윤경;원명주;이의철
    • 한국콘텐츠학회논문지
    • /
    • 제14권10호
    • /
    • pp.463-471
    • /
    • 2014
  • 본 논문에서는 근적외선 카메라를 이용한 눈의 다양한 특징 분석을 통해 감성을 분류하는 방법에 관한 연구를 진행하였다. 제안하는 방법은 기존의 유사한 연구와 비교했을 때, 감성 분류를 위해 더 많은 눈의 특징을 사용하였고, 각 특징이 모두 유의미한 정보를 포함하고 있음을 검증하였다. 긍정-부정, 각성-이완의 상반된 감성 유발을 위해 청각 자극을 사용함으로써, 눈의 특징에 끼치는 영향을 최소화하였다. 감성 분류를 위한 특징으로써, 동공 크기, 동공 크기 변화율, 깜박임 빈도, 눈을 감은 지속시간을 사용하였으며, 이들은 근적외선 카메라 영상으로부터 자체 개발한 자동화된 처리 방법을 통해 추출된다. 분석 결과, 각성-이완 감성 유발 자극에 대해서는 동공 크기 변화율과 깜박임 빈도 특징이 유의한 차이를 보였다. 또한, 긍정-부정 감성 유발 자극에 대해에서는 눈을 감은 지속시간 특징이 유의한 차이를 보였다. 특히 동공 크기 특징은 각성-이완, 긍정-부정의 상반된 감성 자극 유발 상황에서 모두 유의한 차이가 없음을 확인할 수 있었다.

Gabor 웨이블릿을 이용한 회전 변화에 무관한 질감 분류 기법 (Rotation-Invariant Texture Classification Using Gabor Wavelet)

  • 김원희;윤청파;문광석;김종남
    • 한국멀티미디어학회논문지
    • /
    • 제10권9호
    • /
    • pp.1125-1134
    • /
    • 2007
  • 본 논문에서는 가보 웨이블릿(Gabor Wavelet)을 이용한 회전 변화에 무관한 질감 분류 기법을 제안한다. 기존의 방법들은 대용량 질감 데이터베이스에서 낮은 정정분류비(Correct Classification Rate)를 나타내었다. 제안한 방법은 가보 웨이블릿 필터링 된 영상에서 전역 특징 벡터(Global Feature Vector)와 지역 특징행렬(Local Feature Matrix)을 정의하였다. 회전 변화에 무관한 두 가지 특징 그룹을 이용하여 개선된 유사도 측정 판별식(Discriminant)을 정의하였으며, 실험을 통하여 대용량 질감 데이터베이스에 적용한 결과 향상된 정정분류비를 얻을 수 있었다. 또한 질감 영상 스펙트럼의 대칭성을 이용하여 기존의 방법보다 실험회수를 50% 가까이 감소시켰다 결론적으로 112개의 브로다츠(Brodatz) 질감 클래스에서 비교 방법에 따라 차이는 있으나 $2.3%{\sim}15.6%$의 향상된 정정분류비를 얻었다.

  • PDF

Development of a Classification Model for Driver's Drowsiness and Waking Status Using Heart Rate Variability and Respiratory Features

  • Kim, Sungho;Choi, Booyong;Cho, Taehwan;Lee, Yongkyun;Koo, Hyojin;Kim, Dongsoo
    • 대한인간공학회지
    • /
    • 제35권5호
    • /
    • pp.371-381
    • /
    • 2016
  • Objective:This study aims to evaluate the features of heart rate variability (HRV) and respiratory signals as indices for a driver's drowsiness and waking status in order to develop the classification model for a driver's drowsiness and waking status using those features. Background: Driver's drowsiness is one of the major causal factors for traffic accidents. This study hypothesized that the application of combined bio-signals to monitor the alertness level of drivers would improve the effectiveness of the classification techniques of driver's drowsiness. Method: The features of three heart rate variability (HRV) measurements including low frequency (LF), high frequency (HF), and LF/HF ratio and two respiratory measurements including peak and rate were acquired by the monotonous car driving simulation experiments using the photoplethysmogram (PPG) and respiration sensors. The experiments were repeated a total of 50 times on five healthy male participants in their 20s to 50s. The classification model was developed by selecting the optimal measurements, applying a binary logistic regression method and performing 3-fold cross validation. Results: The power of LF, HF, and LF/HF ratio, and the respiration peak of drowsiness status were reduced by 38%, 22%, 31%, and 7%, compared to those of waking status, while respiration rate was increased by 3%. The classification sensitivity of the model using both HRV and respiratory features (91.4%) was improved, compared to that of the model using only HRV feature (89.8%) and that using only respiratory feature (83.6%). Conclusion: This study suggests that the classification of driver's drowsiness and waking status may be improved by utilizing a combination of HRV and respiratory features. Application: The results of this study can be applied to the development of driver's drowsiness prevention systems.

유.무성음 및 묵음 식별에 관한 연구 (A Study on the Voiced, Unvoiced and Silence Classification)

  • 김명환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1984년도 추계학술발표회 논문집
    • /
    • pp.73-77
    • /
    • 1984
  • This paper reports on a Voiced-Unvoiced-Silence Classification of speech for Korean Speech Recognition. In this paper, it is describe a method which uses a Pattern Recognition Technique for classifying a given speech segment into the three classes. Best result is obtained with the combination using ZCR, P1, Ep and classification error rate is less than 1%.

  • PDF

오디오 부호화기를 위한 스펙트럼 변화 및 MFCC 기반 음성/음악 신호 분류 (Speech/Music Signal Classification Based on Spectrum Flux and MFCC For Audio Coder)

  • 이상길;이인성
    • 한국정보전자통신기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.239-246
    • /
    • 2023
  • 본 논문에서는 오디오 부호화기를 위한 스펙트럼 변화 파라미터와 Mel Frequency Cepstral Coefficients(MFCC) 파라미터를 이용하여 음성과 음악 신호를 분류하는 개루프 방식의 알고리즘을 제안한다. 반응성을 높이기 위해 단구간 특징 파라미터로 MFCC를 사용하고 정확도를 높이기 위해 장구간 특징 파라미터로 스펙트럼 변화를 사용하였다. 전체적인 음성/음악 신호 분류 결정은 단구간 분류와 장구간 분류를 결합하여 이루어진다. 패턴인식을 위해 Gaussian Mixed Model(GMM)을 사용하였고, Expectation Maximization(EM) 알고리즘을 사용하여 최적의 GMM 파라미터를 추출하였다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 다양한 오디오 음원에서 평균적으로 1.5% 분류 오류율을 보였고 단구간 단독 분류 방법 보다 0.9%, 장구간 단독 분류 방법보다 0.6%의 분류 오류율의 성능 개선을 이룰 수 있었다. 제안된 장단구간 결합 음성/음악 신호 분류 방법은 USAC 오디오 분류 방법보다 타악기 음악 신호에서 9.1% 분류 오류율, 음성신호에서 5.8% 분류 오류율의 성능 개선을 이룰 수 있었다.

바닥충격음의 평가등급 설정에 관한 연구 (A Study on the Rate Classification of Floor Impact Noise)

  • 류종관;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.486-491
    • /
    • 2002
  • Auditory experiments based on subjective responses were undertaken for the standard heavy and light weight impact noise. Relations between noise levels and subjective evaluations were also investigated. As a result, it was shown that the noise class was rated with the range of sensible satisfaction by investigating the various social responses for the floor impact noise. The rate classification for the heavy weight impact noise is suggested as a design guide for concrete slabs which satisfy the residents' requirements in various sound insulation capacities of multistory residential buildings.

  • PDF

로지스틱모형을 이용한 가로구간 사고모형 (Accidents Model of Arterial Link Sections by Logistic Model)

  • 박병호;임진강;한수산
    • 한국안전학회지
    • /
    • 제25권4호
    • /
    • pp.90-95
    • /
    • 2010
  • This study deals with the accident model of arterial link section in Cheongju. The objective is to develop the accident model of arterial link section using the logistic regression. In pursuing the above, the study uses the 258 accident data occurred at the 322 arterial link section. The main results are as follows. First, Nagellerke $R^2$ of developed accident model is analyzed to be 0.309 and t-values of variable that explains goodness of fit are evaluated to be significant. Second, the variables adopted in the model are AADT, the number of exit and entry. These variables are all analyzed to be statistically significant. Finally, the analysis of correct classification rate shows that the total accident of correct classification rate is analyzed to be 72.7% at the arterial link section.

Estimating Prediction Errors in Binary Classification Problem: Cross-Validation versus Bootstrap

  • Kim Ji-Hyun;Cha Eun-Song
    • Communications for Statistical Applications and Methods
    • /
    • 제13권1호
    • /
    • pp.151-165
    • /
    • 2006
  • It is important to estimate the true misclassification rate of a given classifier when an independent set of test data is not available. Cross-validation and bootstrap are two possible approaches in this case. In related literature bootstrap estimators of the true misclassification rate were asserted to have better performance for small samples than cross-validation estimators. We compare the two estimators empirically when the classification rule is so adaptive to training data that its apparent misclassification rate is close to zero. We confirm that bootstrap estimators have better performance for small samples because of small variance, and we have found a new fact that their bias tends to be significant even for moderate to large samples, in which case cross-validation estimators have better performance with less computation.