• Title/Summary/Keyword: Rat ovary

Search Result 127, Processing Time 0.025 seconds

Korean Red Ginseng alleviates dehydroepiandrosterone-induced polycystic ovarian syndrome in rats via its antiinflammatory and antioxidant activities

  • Choi, Jong Hee;Jang, Minhee;Kim, Eun-Jeong;Lee, Min Jung;Park, Kyoung Sun;Kim, Seung-Hyun;In, Jun-Gyo;Kwak, Yi-Seong;Park, Dae-Hun;Cho, Seung-Sik;Nah, Seung-Yeol;Cho, Ik-Hyun;Bae, Chun-Sik
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.790-798
    • /
    • 2020
  • Background: Beneficial effects of Korean Red Ginseng (KRG) on polycystic ovarian syndrome (PCOS) remains unclear. Methods: We examined whether pretreatment (daily from 2 hours before PCOS induction) with KRG extract in water (KRGE; 75 and 150 mg/kg/day, p.o.) could exert a favorable effect in a dehydroepian-drosterone (DHEA)-induced PCOS rat model. Results: Pretreatment with KRGE significantly inhibited the elevation of body and ovary weights, the increase in number and size of ovarian cysts, and the elevation of serum testosterone and estradiol levels induced by DHEA. Pretreatment with KRGE also inhibited macrophage infiltration and enhanced mRNA expression levels of chemokines [interleukin (IL)-8, monocyte chemoattractant protein-1), proinflammatory cytokines (IL-1β, IL-6), and inducible nitric oxide synthase in ovaries induced by DHEA. It also prevented the reduction in mRNA expression of growth factors (epidermal growth factor, transforming growth factor-beta (EGF, TGF-β)) related to inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cell pathway and stimulation of the nuclear factor erythroid-derived 2-related factor 2 pathway. Interestingly, KRGE or representative ginsenosides (Rb1, Rg1, and Rg3(s)) inhibited the activity of inflammatory enzymes cyclooxygenase-2 and iNOS, cytosolic p-IκB, and nuclear p-nuclear factor kappa-light-chain-enhancer of activated B in lipopolysaccharide-induced RAW264.7 cells, whereas they increased nuclear factor erythroid-derived 2-related factor 2 nuclear translocation. Conclusion: These results provide that KRGE could prevent DHEA-induced PCOS via antiinflammatory and antioxidant activities. Thus, KRGE may be used in preventive and therapeutic strategies for PCOS-like symptoms.

Effect of Gonadotropin Releasing Hormone-Agonist on Apoptosis of Luteal Cells in Pregnant Rat (Gonadotropin Releasing Hormone-Agonist가 임신된 흰쥐 황체세포의 세포자연사에 미치는 영향)

  • 양현원;김종석;박철홍;윤용달
    • Development and Reproduction
    • /
    • v.6 no.2
    • /
    • pp.131-139
    • /
    • 2002
  • Since GnRH and its receptor genes are expressed in the ovary, it has been suggested that ovarian GnRH might be involved in the regulation of ovarian function and the apoptosis of ovarian cells. However, it was not known well on the expression and function of GnRH and its receptor in the corpus luteum. The present study was undertaken to investigate whether GnRH and its receptor are expressed in luteal cells and GnRH has any effect on the apoptosis of luteal cells. Luteal cells obtained from the pregnant rats were cultured and stained for GnRH and its receptor proteins. Cultured luteal cells showed distinct immunoreactivity against both anti-GnRH and anti-GnRH receptor antibodies. In addition, the presence of GnRH receptor protein in cultured cells was confirmed by Western blot analysis. To investigate the effect of GnRH on the apoptosis of luteal cells, luteal cells were cultured in the presence of 10$^{-6}$ M GnRH-agonist(GnRH-Ag) for 3, 8, and 12h. TUNEL assay showed that the number of cells undergoing apoptosis increased 12h after culture(P<0.05). DNA fragmentation analysis confirmed the results such that the cells treated for 12h showed the greatest increase of fragmentation(p<0.05). Further, Western blot analysis of cytochrome c in the mitochondrial and cytoplasmic fractions of the luteal cells showed that GnRH-Ag treatment increased the content of cytochrome c in cytoplasm. These results demonstrate that the luteal cells express GnRH and its receptor and GnRH-Ag treatment induces apoptosis of the luteal cells via mitochondrial release of cytochrome c. The present study suggest that the releasing of cytochrome c from mitochondria might be involved in the luteal cell apoptosis induced by GnRH-Ag.

  • PDF

Effects of GnRH Agonist Used for Ovarian Hyperstimulation in Human IVF-ET on the Apoptosis of Preovulatory Follicular Cells (인간 체외수정 및 배아이식에 있어서 과배란 유도 과정에 사용한 GnRH Agonist가 배란 전 난포내 과립 세포의 세포자연사에 미치는 영향)

  • Yang, Hyun-Won;Kwon, Hyuck-Chan;Hwang, Kyung-Joo;Park, Jong-Min;Oh, Kie-Suk;Yoon, Yong-Dal
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.1
    • /
    • pp.55-65
    • /
    • 1999
  • There have been many reports to date regarding the role of GnRH as a local regulatory factor of ovarian function as studies of human and rat ovaries revealed GnRH and its receptor. In recent studies it has been shown that GnRH directly causes apoptosis in the granulosa cells of the rat ovary, and such results leads to the suggestion that the use of GnRH agonist for more stable long term ovarian hyperstimulation in human IVF-ET programs causes granulosa cell apoptosis which may lead to follicular atresia. Therefore this study attempts to determine if granulosa-luteal cell apoptosis occurs in patients during IVF-ET programs in which GnRH agonist is employed for ovarian hyperstimulation. The quality of oocyte-cumulus complexes obtained during ovum pickup procedures were assessed morphologically and then the fertilization rate and developmental rate was determined. Apoptotic cells among the granulosa-luteal cells obtained during the same procedure were observed after staining with Hematoxylin-eosin. The fragmentation degree of DNA extracted from granulosa-luteal cells was determined and comparatively analyzed. There was no difference in the average age of the patients, the number of oocytes retrieved, and fertilization and developmental rates between the FSH/hMG group and GnRH-long group. There was also no difference in the apoptosis rate and pyknosis rate in the granulosa-luteal cells between the two groups. However, when the oocyte-cumulus complexes were morphoogically divided into the healthy group and atretic group without regard for the method of hyperstimulation, the results showed that the number of oocytes obtained averaged $11.09{\pm}8.75\;and\;10.33{\pm}4.53$ per cycle, respectively, showing no significant difference, but the fertilization rate (77.05%, 56.99%, respectively, p<0.01) and developmental rate (65.96%, 41.51%, respectively, p<0.01) was significantly increased in the healthy group when compared to the atretic group. The degree of apoptosis in the granulosa-luteal cells showed that in the healthy group it was 2.25% which was not significantly different from the atretic group (2.77%), but the pyknosis rate in the atretic group (27.81%) was significantly higher compared to the healthy group (11.35%, p<0.01). The quantity of DNA fragmentation in the FSH/hMG group was 32.22%, while in the GnRH-long group it was 34.27%, showing no significant difference. On the other hand the degree of DNA fragmentation was 39.05% and 11.83% in the healthy group and atretic group, respectively, showing significantly higher increase in the atretic group (p<0.01). The above results suggest that death of granulosa-luteal cells according to the state of the oocyte-cumulus complex is more related to pyknosis rather than apoptosis. Also, the GnRH agonist used in ovarian hyperstimulation does not seem to directly affect the apoptosis of retrieved oocytes and granulosa-luteal cells, and which is thought to be due to the suppression of the apoptogenic effect of GnRH agonist as a result of the high doses of FSH administered.

  • PDF

Effects of Ovarian Function on the Hypophyseal Gonadotropin Secretion in Rats (흰쥐의 난소기능(卵巢機能)이 하수체(下垂體)의 성선(性腺) 날극(剌戟)호르몬 분비(分泌)에 미치는 영향(影響))

  • Seo, Kil Woong;Kim, Chong Sup;Park, Chang Sik;Lee, Kyu Seung
    • Korean Journal of Agricultural Science
    • /
    • v.16 no.2
    • /
    • pp.169-178
    • /
    • 1989
  • The study was carried out to elucidate the feedback mechanism on the hypothalamo-hypophyseal system from the functional changes of ovary in female rats. One hundred and forty-four mature female rats were lloted into the three groups; ovariectoimzed group, estradiol treated group and intact control group. The varies of 48 heads of rat were completely removed. Forty eight heads of rat were administered with $200{\mu}g$ of estradiol benzoate every 48 hours. Serum FSH, LH and prolactin levels were determined with radioimmunoassay method at 3,6,12,24 ours, and 5,10, and 15days after treatment. The rats were necropsied to measure the weights of hypophysis and to examin the histological changes in the organs. The results obtained were as follows: The weights of hypophysis were increased after ovariectomy and decreased after estradiol injection. The differences in hypophysis weights were significant between the group from 5 days after treatment. The histological changes in hypophysis were appeared from 5th day after ovariectomy. Proliferation and hypertrophy began to occur in basophilic from 10th day after ovariectomy, chromophobes were slightly hypertrophied and acidophilic cells were atrophied. In estradiol injected rats the histological findings were appeard to be contrary to those of ovariectomized rats. Serum FSH levels significantly changed after ovariectomy and estradiol injection and were higher in both the treated groups than in the intact control group. Within 18 hours after treatment the level was the highest in ovariectomized group, and thereafter the highest level was found in estradiol treated gorup. In ovariectomized rats the levels were rapidly increased 3 hours after treatment and maximum levels were found 18 hours after treatment. In estradiol treated rats the levels started to increase 18 hours after treatment and reached maximum levels 24 hours treatment. 4. Serum LH levels started to increase 3 hours after ovariectomy and estradiol injection and reached maximum levels 12 hours after ovariectomy and 24 hours after estradiol injection. There were significant differences in LH levels between the groups in each observation time. Up to 18 hours after treatment levels were higher in ovariectomized rats than in estradiol treated rats. but thereafter the levels were higher in estradiol treated rats than in ovariectomized rats. The multiple range test showed that a significant difference in LH levels was not found between ovariectomized group and estradiol treated group 18 hours and 5 days after treatment. 5. Serum prolactin levels were significantly changed after ovariectomy and estradiol injection. The levels were lower in ovariectomized rats than in intact control rats.

  • PDF

Effect of Di(2-ethyl hexyl)phthalate(DEHP) on the Onset of Puberty in Female Rat (암컷 흰쥐의 사춘기 개시에 미치는 di(2-ethyl hexyl)phthalate(DEHP)의 효과)

  • Lee, Kyeung-Yeup;Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.10 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Phthalates such as di(2-ethyl hexyl)phthalate(DEHP) are industrial chemicals with wide-ranging human exposures because of their use in plastics and other common consumer products. Consequently, their adverse effects as endocrine disruptor in the reproductive physiology of both laboratory rodents and human have been studied extensively. The present study was undertaken to examine whether prepubertal exposure to DEHP affects on the onset of puberty and the associated reproductive parameters such as hormone receptor expressions in female rats. DEHP(100mg/kg/day) was administered daily from postnatal day 25(PND 25) through the day when the first vaginal opening(VO) was observed, and the animals were sacrificed on the next day. Gross anatomy and weight of reproductive tissues were compared to test the DEHP's effects on the cell proliferation. Furthermore, histological studies were performed to assess the structural alterations in the tissues. Specific radioimmunoassay was carried out to measure serum LH levels. To determine the transcriptional changes in progesterone receptor(PR), total RNAs were extracted and applied to the semi-quantitative reverse transcription polymerase chain reaction(RT-PCR). As a result, delayed VO was shown in the DEHP group(PND $37.3{\pm}0.7$) compared to the control group(PND $35.3{\pm}0.7$; p<0.05). DEHP treatment significantly decreased the wet weight of ovaries and uteri compared to the control group(p<0.05). Interestingly, elevation of serum LH levels was shown in the DEHP group(p<0.05). Graafian follicles and corpora lutea were observed only in the ovaries from the control animals. Numerous primary, secondary follicles and small atretic follicles were observed in the ovaries from DEHP-treated animals. Similarly, hypotrophy of luminal and glandular uterine epithelium was found in the DEHP-treated group. These effects were probably due to the inhibitory effects of DEHP on the synthesis and secretion of estrogen from granulosa cells. In the semiquantitative RT-PCR studies, the transcriptional activities of PR in both ovary(p<0.05) and uterus(p<0.01) from DEHP-treated animals were significantly lower than those from the control animals. The present studies demonstrated that the acute exposure to DEHP during the critical period of prepubertal stage could inactivate the reproductive system resulting delayed puberty in female rats.

  • PDF

Role of Ghrelin in the Control of Reproductive Endocrine Function (포유류 생식 내분비 기능 조절에서 Ghrelin의 역할)

  • Lee, Sung-Ho
    • Development and Reproduction
    • /
    • v.13 no.4
    • /
    • pp.207-215
    • /
    • 2009
  • Numerous factors can affect the activities of hypothalamus-pituitary-gonad (HPG) hormonal axis, resulting in alteration of reproductive capacity or status such as onset of puberty and menopause. Soon after the finding of leptin, a multifunctional hormone secreted from adipocytes, a close relationship between reproduction and body energy balance have been manifested. Ghrelin, another multifunctional hormone from gastrointestinal tract, is an endogenous ligand of growth hormone secretagogue receptor (GHSR), and is thought to be a counterpart of leptin in the regulation of energy homeostasis. As expected, ghrelin can also modulate the reproductive capacity through the modulation of activities of HPG axis. This paper summarizes the current knowledge on the discovery, gene structures, tissue distribution and roles of ghrelin and GHSRs in mammalian reproduction in particular modulation of reproductive hormone secretion in HPG axis. Like POMC gene expression in pituitary gland, preproghrelin gene can generate a complex repertoire of transcripts which further undergo alternative splicing and posttranslational modifications. Concerning the roles of preproghrelin gene products in the control of body physiology except energy homeostasis, limited knowledge is available so far. Several lines of evidence, however, show the interplay of ghrelin between metabolism and reproduction. In rat and human, the distribution of ghrelin receptor GHSRs (GHSR1a and GHSR1b) has been confirmed not only in the hypothalamus and pituitary which were originally postulated as target of ghrelin but also in the testis and ovary. Expression of the preproghrelin gene in the brain and gonads was also verified, suggesting the local role (s) of ghrelin in HPG axis. Ghrelin might play a negative modulator in the secretions of hypothalamic GnRH, pituitary gonadotropins and gonadal steroids though the action on pituitary is still questionable. Recent studies suggest the involvement of ghrelin in regulation of puberty onset and possibly of menopause entry. It is now evident that ghrelin is a crucial hormomal component in 'brain-gut' axis, and is a strong candidate links between metabolism and reproduction. Opposite to that for leptin, ghrelin signaling is likely representing the 'hunger' state of body energy balance and is necessary to avoid the energy investment into reproduction which has not a top priority in maintaining homeostasis. Further researches are needed to gain a deep insight into the more precise action mechanism and role of ghrelin in reproduction, and to guarantee the successful biomedical applications.

  • PDF

Evaluation of Macrophage Activity and Repeated Oral Dose Toxicity in Sprague-Dawley Rats on Multivitamin (종합비타민의 랫드에서 반복투여독성 시험과 대식세포 기능 활성 평가)

  • Kim, Hye-Ri;Jang, Hye-Yeon;Lee, Hae-Nim;Park, Young-Seok;Park, Byung-Kwon;Kim, Byeong-Soo;Kim, Sang-Ki;Cho, Sung-Dae;Nam, Jeong-Seok;Choi, Chang-Sun;Chang, Soon-Hyuk;Jung, Ji-Youn
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.4
    • /
    • pp.360-366
    • /
    • 2013
  • The objective of this study is to investigate the effect of multivitamin on macrophage activity in Raw 264.7 cell and repeated oral dose toxicity in Sprague-Dawely rat of multivitamin. Raw 264.7 cells were treated with 50 and $100{\mu}g/mL$ multivitamin for 24 h. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with 50 and $100{\mu}g/mL$ multivitamin for 24 h significantly increased production of NO and TNF-${\alpha}$ compared with control groups, indicating activation of macrophages. The female rats were treated with multivitamin of control group, low group (0.24 g/kg), medium group (1 g/kg) and high group (2 g/kg) intragastrically for 4 weeks, respectively. We examined the body weight, the feed intake, the clinical signs and serum biochemical analysis. We also observed the histopathological changes of liver, ovary, brain, adrenal gland, spleen, kidney, heart and lung in rats. No significant differences in body weights, feed intake, biochemical analysis and histopathological observations between control and multivitamin treatment group were found. In conclusion, multivitamin is physiologically safe and improve macrophage activity.