• Title/Summary/Keyword: Rat hepatocytes

Search Result 272, Processing Time 0.03 seconds

Effect of Collagen Concentration on the Viability and Metabolic Function of Encapsulated Hepatocytes

  • Kim, Sung-Koo;Yu, Sun-Hee;Lee, Ji-Hyun;Axel Racemacher;Lee, Doo-Hoon;Park, Jung-Keug
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.423-427
    • /
    • 2001
  • Chitosan/alginate capsules were formed by electrostatic interactions and had appropriated mechanical strength, permeability to albumin, and stability to hepatocytes. Rat hepatocytes were isolated and immobilized in chitosan/alginate capsules. During the encapsulation process with hepatocyte, 10% of viability was decreased mainly due to the low pH of the chitosan solution. Among various capsule fabrication methods, the chitosan-alginate capsule showed the highest mechanical strength. Addition of collagen in the capsule with hepatocytes enhanced hepatic metabolism as well as the cell viability for 2 weeks of culture. The hepatocyte in the capsule without collagen decreased the viability to 10% for 2-week cultures.

  • PDF

Effects of Extracellular Calcium and Starvation on Biochemical Indices of the Rat Hepatocytes

  • Kim, Ki-Sung
    • Toxicological Research
    • /
    • v.11 no.2
    • /
    • pp.199-203
    • /
    • 1995
  • The focus of this study was to investigate that cellular parameters and glucose uptake might be altered by extracellular calcium and starvation. Addition of 1 mM $Ca^{++}$ to hepatocytes (equalling to the free calcium concentration of blood) significantly increased intracellular $Na^+$ and decreased $Na^+$ & LDH leakage. This pertains to the hepatocytes of control rats as well as those of rats fasted for 24 and 48. hr. These effects might be come from the membrane-stabilizing effects of calcium. But calcium had no effects on cell volumes, superoxide-formation and glucose uptake. Actually hepatocytes of starved rats showed changes in several cellular parameters. Starvation increased LDH leakage, glucose uptake and the total concentration of $Na^+$ and $Na^+$ whereas it markedly decreased cell volumes. Since total tonicity remained unchanged, intracellular $Na^+$ and $Na^+$ could contribute to a higher share of total osmolarity in starvation. Starvation increased the cytoplasmic pH because $R-NH^{3+}$ions and their corresponding counterions disappeared. This increase may be related to suppress the protonization of amino groups in proteins. Starvation decreased hepatic glycogen, a major compound that affects cytosolic volume of hepatocytes. The data indicate that starvation increases the glucose transport activity. The possible molecular basis will be discussed.

  • PDF

The Involvement of p38 MAPK and JNK Activation in Palmitic Acid-Induced Apoptosis in Rat Hepatocytes (Palmitic acid에 의한 간세포 사멸효과에 대한 p38 MAPK 및 JNK 관련성)

  • Bae, Chun-Sik;Park, Soo-Hyun
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1119-1124
    • /
    • 2009
  • Hyperlipidemia has been reported to be associated with the development of fatty liver. Palmitic acid, a major saturated fatty acid, is involved in the development of diverse diseases. The activation of mitogen activated protein kinases (MAPKs), such as Jun N-terminal kinase (INKs) and p38 MAPK is implicated in the apoptosis in diverse cells. Thus, this study was conducted to investigate the effects of palmitic acid on apoptosis and its relationship between JNK and p38 MAPK in cultured rat hepatocytes. In the present study, palmitic acid (>50 uM) decreased cell proliferation and increased lactate dehydrogenase activity in hepatocytes, which was blocked by the treatment of SP600125 (a JNK inhibitor) and SB203580 (a p38 MAPK inhibitor). Indeed, palmitic acid decreased Bcl-2 expression but increased Bax expression in rat hepatocytes, which was blocked by the treatment of SP600125 and SB203580. In addition, palmitic acid decreased glutathione (GSH) content and increased lipid peroxide formation, which was blocked by the treatment of SP600125 and SB203580. Western immunoblotting analysis also revealed that palmitic acid increased JNK and p38 MAPK. In conclusion, palmitic acid induced apoptosis through oxidative stress via JNK and p38 MAPK activation in rat hepatocytes.

Antihepatotoxic and Antioxidant Activities of Polysaccharide Obtained from Cultured Mycelia of Ganoderma lucidum

  • Lee, June-Woo
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.417-424
    • /
    • 2019
  • The purpose of this study was to observe the effects of the polysaccharide (GLP) obtained from the liquid cultured Ganoderma lucidum on the lipidperoxidation in a rat liver microsome and hepatotoxicity in the primary cultured rat hepatocytes. It is well known that the polysaccharide of Ganoderma lucidum exhibits hepatoprotective activity, antitumor activity etc., which many suggest a relationship to lipidperoxidation. The effect of GLP on $CCl_4-$ and galactosamineintoxicated cytotoxicity in the primary cultured rat hepatocytes were reduced the GPT value. In order to the estimate the effects of anti-lipidperoxidation of the polysaccharide, enzymatic and nonenzymatic reaction assays were performed, in vitro, in the rat liver microsome. An enzymatic lipidperoxidation reaction by $ADP+FeCl_3+NADPH$ and $CCl_4+NADPH$, GLP (1 mg/mL) inhibited 77.4% and 39.4%, respectively, and the nonenzymatic reaction displayed a 97.4% strongly inhibition. In the enzymatic and nonenzymatic inducers treated with GLP, the formation of malondialdehyde (MDA) progressively decreased by raising the GLP concentration. These results suggest that the anti-lipidperoxidation and radical scavenging activity of GLP may play an important part in the liver protection action.

Effects of copper sulfate poisoning on the fine structure of rat liver (유산동(硫酸銅) 중독(中毒)이 랫트 간장(肝臟)의 미세구조(微細構造)에 미치는 영향(影響))

  • Yoon, Hwa-joong;Lee, Sang-mog;Jang, Byoung-joon
    • Korean Journal of Veterinary Research
    • /
    • v.30 no.1
    • /
    • pp.85-91
    • /
    • 1990
  • This study was designed in order to investigate the effect of copper sulfate to the ultrastructural changes of the hepatocytes in Sprague Dawley rats. The animals were administered with copper sulfate (10mg/kg B.W.), which was dissolved in normal saline. The solution was injected into abdominal cavity every day. The animals were sacrificed at the 6th, 12th, and 24th day from the beginning of administration. The specimens obtained from the liver were observed with electron microscope and significant changes were as follows. 1. A prominent dilatation and disruption of the cisternae of rough endoplasmic reticulum were recognized. Also, the detachment of membrane bound ribosomes was shown. 2. The proliferation of smooth endoplasmic reticulum and the depletion of glycogen particles were noted. 3. The increase of primary lysosomes and autophagic vacuoles was obserbed. 4. The dilatation of mitochondrial cristae was obserbed. And it was irregulary scattered in the stroma of mitochondria. 5. The atrophy of microvilli in the bile canaliculi and space of Disse was prominent. 6. Membrane of hepatocytes was damaged and significant hydrophic degeneration was obserbed in the perisinusoidal regions. 7. The damage of Fat-storing cells was more significant than that of hepatocytes.

  • PDF

Hormonal Regulation of Acetyl-CoA Carboxylase Promoter I Activity in Rat Primary Hepatocytes (흰쥐의 간세포에서 호르몬에 의한 Acetyl-CoA Carboxylase Promoter I Activity 조절에 대한 연구)

  • 이막순;양정례;김윤정;김영화;김양하
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.207-212
    • /
    • 2002
  • Acetyl-CoA carboxylase (ACC) is the enzyme that controls no devo fatty acid biogynthesis, and this enzyme catalyzes the carboxylation pathway of acetyl-CoA to malonyl-CoA. Acetyl-CoA carboxylase gene expression was regulated by nutritional and hormonal status. The present study was performed to identify the regulation mechanism of ACC gene promoter I. The fragments of ACC promoter I -1.2-kb region wert recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocytes from the rat were used to investigate the hormonal regulation of ACC promoter I activity. ACC PI (-1.2)/Luc plasmid was trtransferred into primary hepatocytes using lipofectin. Activity of luciferase was increased two-fold by 10-9M, three-fold by 10-8M, 10-6M, 3.5-fold by 10-6M, and 4.5-fold by 10-7M insulin treatment, respectively. In the presence of dexamethasone (1 $\mu$M), the effects of insulin increased about 1.5-fold, showing the additional effects of dexamethasone. Moreover, the activity of luciferase increased with insulin+dexamethasone, insulin+T3, dexamethasone+T3, and dexamethasone+insulin+T3 treatment approximately 6-, 4-, 6.5-, and 10-fold, respectively. Therefore it can be postulated that 1) these hormones coordinately regulate acetyl-CoA caroxylase gene expression via regulation of promoter activity, 2) the -1.2-kb region of ACC promoter I may have the response element sequences for insulin, dexamethasone, and T3.

Effects of Aqueous Extract Isolated from Platycodon grandiflorum Against t-Buty lhydroperoxide-induced Oxidative Stress in Rat Primary Hepatocytes (일차배양 간세포에서 t-Buty lhydroperoxide에 의해 유발된 산화적 스트레스에 대한 길경 열수 추출물의 보호효과)

  • 최철웅;이경진;정혜광
    • YAKHAK HOEJI
    • /
    • v.46 no.6
    • /
    • pp.466-471
    • /
    • 2002
  • Oxidative stress is considered to be associated with many diseases, such as inflammatory and cardiovascular diseases, aging and cancer. An important etiological mechanism of these diseases may be a causal relationship between the presence of oxidants and the generation of lipid hydroperoxides derived from enzymatic reactions or xenobiotic metabolism. The hydroperoxides can be decomposed to alkoxy- (ROㆍ) and peroxy- (ROOㆍ) free radicals that can oxidize other cell components, resulting in changes in enzyme activity or the generation of mediators, which can cause further cell damage. The aim of this study was to evaluate the ability of aqueous extract from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil (CK), to affect cellular response in primary cultures of rat hepatocytes to t-butyl hydroperoxide (t-BHP) induced oxidative stress and hepatotoxicity. CK-treated cells showed an increased resistance to oxidative challenge, as revealed by a higher percent of survival capacity in respect to control cells. CK reduced t-BHP-enhanced lipid peroxidation measured as production of malondialdehyde and enhanced intracellular reduced glutathione depletion by t-BHP. Furthermore, CK protected from the t-BHP-induced intracellular generation of reactive oxygen species assessed by monitoring dichlorodihydrofluorescein fluorescence. It can be concluded that CK exerts an antioxidant action inside the cell, responsible for the observed modulation of the cellular response to oxidative challenge, and CK have a marked antioxidative and hepatoprotective potency.

Study on the Anti - Hyperlipidemia and Liver Cell Protection of Korean Medicinal Herb Complex of Alcohol fed Rats

  • Park, Kap Joo;Ahn, Ki Heung;Kim, Myung Hee;Lee, Hyung Hoan
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.4
    • /
    • pp.519-523
    • /
    • 2004
  • This study sought to investigate the ameliorating effects of a Korean medicinal herb (KMH) complex on the impacts of alcohol consumption in rat hepatocytes and in reducing the total cholesterol levels and the total lipid levels in the serum. We compared the body weight gain and ratio of the liver, the kidney to body weight, and also the serum biochemistry of the rats administered with both the alcohol and the KMH complex to the control rats treated with alcohol alone. The clinically important enzyme markers (Aspartate Aminotransferase, AST, and Alanine Aminotransferase, ALT) of rats, administered with both the alcohol and the KMH complex treatments, were compared with those in the control group. The treatment regimen (KMH complex) significantly reduced the serum AST and ALT levels, indicating the hepato-protective effects of the KMH complex. Furthermore, total cholesterol and total lipid levels were significantly reduced. These results indicate that the KMH complex may positively mediate the effects of alcohol on hepatocytes and the general liver functions.

Glycochenodeoxycholic Acid Induces Cell Death in Primary Cultured Rat Hepatocyte: Apoptosis and Necrosis

  • Chu, Sang-Hui;Park, Wol-Mi;Lee, Kyung-Eun;Pae, Young-Sook
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.565-570
    • /
    • 1999
  • Intracellular accumulation of bile acids in the hepatocytes during cholestasis is thought to be pathogenic in cholestatic liver injury. Due to the detergent-like effect of the hydrophobic bile acids, hepatocellular injury has been attributed to direct membrane damage. However histological findings of cholestatic liver diseases suggest apoptosis can be a mechanism of cell death during cholestatic liver diseases instead of necrosis. To determine the pattern of hepatocellular toxicity induced by bile acid, we incubated primary cultured rat hepatocytes with a hydrophobic bile acid, Glycochenodeoxycholate (GCDC), up to 5 hours. After 5 hours incubation with $400\;{\mu}M$ GCDC, lactate dehydrogenase released significantly. Cell viability, quantitated in propidium iodide stained cells concomitant with fluoresceindiacetate was decreased time- and dose-dependently. Most nuclei with condensed chromatin and shrunk cytoplasm were heavily labelled time- and dose-dependently by a positive TUNEL reaction. These findings suggest that both apoptosis and necrosis are involved in hepatocytes injury caused by GCDC.

  • PDF