• Title/Summary/Keyword: Rat brains

Search Result 83, Processing Time 0.029 seconds

The Effect oi Saponin Fraction of Panax Ginsen C.A. Meyer on Aldehyde Dehydrogenase Activity in Neurons and Astrocytes Isolated from Ethanol Administered Rat Brain (인삼사포닌 분획이 에탄올을 투여한 쥐의 뇌에서 분리한 신경세포와 Astrocyte의 Aldehyde Dehydrogenase 활성에 미치는 영향)

  • Lee, Myeong-Don;Hwang, U-Seop;Seo, Hae-Yeong
    • Journal of Ginseng Research
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 1997
  • The changes in aldehyde dehydrogenase(ALDH, E.C. 1.2.1.3.) activity in neurons and astrocytes isolated from rat brains were investigated after administration of ethanol and Korean red ginseng(Panax ginseng C.A. Meyer) saponln. The cerebral ALDH activity with acetaldehyde and Propionaldehyde was higher in the white matter than in the gray matter. However, using indole-3-a-cetaldehyde and 3,4-dihydroxyphenylacetaldehyde as substrates, there was no significant difference in activity between two regions in cerebrum. In ethanol treated group, ALDH activity with all the substrates in the gray and white matter was lower than in normal group. In ethanol-saponin treated group, the enzyme activity in the white matter remarkably Increased. The ALDH activity in neurons isolated from cerebral cortex in ethanol-treated group was lower than in normal group. In ethanol-saponin treated group, neuronal ALDH activity with propionaldehyde was significantly recovered but not with Indole-3-acetaldehyde. In astrocytes, although the ALDH activity with propionaldehyde in the ethanol-treated group was not changed as compared with normal group, considerable increase in activity was found in ethanol-saponin treated group. These results suggest that Korean red ginseng saponin may protect the neuronal functions from the toxic effects of acetaldehyde derived from ethanol by stimulation of ALDH activity in astrocytes surrounding nerve cells.

  • PDF

A Role of Central NELL2 in the Regulation of Feeding Behavior in Rats

  • Jeong, Jin Kwon;Kim, Jae Geun;Kim, Han Rae;Lee, Tae Hwan;Park, Jeong Woo;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.40 no.3
    • /
    • pp.186-194
    • /
    • 2017
  • A brain-enriched secreting signal peptide, NELL2, has been suggested to play multiple roles in the development, survival, and activity of neurons in mammal. We investigated here a possible involvement of central NELL2 in regulating feeding behavior and metabolism. In situ hybridization and an immunohistochemical approach were used to determine expression of NELL2 as well as its colocalization with proopiomelanocortin (POMC) and neuropeptide Y (NPY) in the rat hypothalamus. To investigate the effect of NELL2 on feeding behavior, 2 nmole of antisense NELL2 oligodeoxynucleotide was administered into the lateral ventricle of adult male rat brains for 6 consecutive days, and changes in daily body weight, food, and water intake were monitored. Metabolic state-dependent NELL2 expression in the hypothalamus was tested in vivo using a fasting model. NELL2 was noticeably expressed in the hypothalamic nuclei controlling feeding behavior. Furthermore, all arcuatic POMC and NPY positive neurons produced NELL2. The NELL2 gene expression in the hypothalamus was up-regulated by fasting. However, NELL2 did not affect POMC and NPY gene expression in the hypothalamus. A blockade of NELL2 production in the hypothalamus led to a reduction in daily food intake, followed by a loss in body weight without a change in daily water intake in normal diet condition. NELL2 did not affect short-term hunger dependent appetite behavior. Our data suggests that hypothalamic NELL2 is associated with appetite behavior, and thus central NELL2 could be a new therapeutic target for obesity.

Study on Change of Poly ADP Ribose Polymerase in the Rat with Thrombotic Stroke by Full Wave Cockroft Walton method's Transcranial Magnetic Stimulation

  • Kim, Whi-Young;Kim, Jun-Hyoung
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.20-27
    • /
    • 2014
  • This study examined the relationships between protein expression and Poly ADP ribose polymerase in brain cell death in brains damaged by thrombotic stroke and treated with the Full Wave- Cockroft Walton (FWCW) method of Transcranial Magnetic Stimulation (TMS). The two-way switching element for TMS drove a half-bridge inverter of the current resonance of direct current voltage (+) and direct current voltage (-), and the experiment was conducted by stimulating the mice with thrombotic stroke through a range of pulses. Thrombotic stroke was caused of ligation of the common carotid artery of male SD mice, and blood reperfusion was conducted five minutes later. Protein expression was examined in immune reaction cells, which reacted to an antibody to Poly ADP ribose polymerase in the cerebrum cells, and western blotting. Observations of the PARP changes after thrombotic stroke showed that the number of Poly ADP ribose polymerase reactions were significantly lower (p < 0.05) in the group treated with TMS of the FWCW than the group with thrombotic stroke 24 hours after its onset. The application of FWCW-TMS helped prevent the necrosis of nerve cells and might prevent the brain damage that occurs as a result of thrombotic stroke, and improve the function recovery and disorder of brain cells.

Effect of task-specific training on Eph/ephrin expression after stroke

  • Choi, Dong-Hee;Ahn, Jin-Hee;Choi, In-Ae;Kim, Ji-Hye;Kim, Bo-Ram;Lee, Jongmin
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.635-640
    • /
    • 2016
  • Recent evidence indicates that the ephrin receptors and ephrin ligands (Eph/ephrin) expression modulate axonal reorganization and synaptic plasticity in stroke recovery. To investigate the effect of task-specific training (TST) on Eph/ephrin expression in the corticospinal tract (CST) after stroke, we compared Eph/ephrin expression in the peri-infarct cortex, pyramid, and spinal cord of a photothrombotic stroke model of rat brains treated with or without TST. The TST treatment showed significantly better recovery in the behavioral tests compared with no treatment. The significant upregulation of ephrin-A1 and ephrin-A5 observed in activated astrocytes of the CST at 2 weeks' post-stroke was decreased by TST. At 5 weeks, post-stroke, the elevated ephrin-A5 levels were decreased in the ipsilateral pyramid and spinal cord by TST. Glial fibrillary acidic protein was upregulated concomitantly with the altered ephrin expression after stroke, and the expression of these proteins was attenuated by TST. These data suggest that TST alters the expression of ephrin ligands in the CST after stroke.

Production and Characterization of Monoclonal Antibodies to Bovine Brain Succinic Semialdehyde Reductase

  • Park, E.Y.;Park, S.Y.;Jang, S.H.;Song, M.S.;Cho, S.W.;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.72-72
    • /
    • 1995
  • Monoclonal antibodies against bovine brain succinic semialdehyde reductase were produced and characterized. A total of nine monoclonal antibodies recognizing different epitopes of the enzyme were obtained, of which two inhibited the enzyme activity and three stained cytosol of rat spinal cord neurons as observed by indirect immunofluorescence microscopy. When unfractionated total proteins of bovine brain homogenate were seperated by gel electrophoresis and immunoblotted, the antibodies specifically recognized a single protein band of 34 kDa, which comigrates with purified bovine succinic semialdehyde reducatase Using the antisuccinic semialdehyde reductase antibodies as probes, we investigated the cross-reactivites of brain succinic semialdehyde reductases from some mammalian and an avian species. The immunoreactive bands on Western blots appeared to be the same in molecular mass-34 kDa-in all animal species tested, including humans. The result indicated that brain succinic semialdehyde reductase is distinct from other aldehyde reductases and that mammalian brains contain only one succinic semialdehyde reductase. Moreover, the enzymes among the species are imunologically very similar, although some properties of the enzymes reported previously were different from one another.

  • PDF

Effects of Toluene Inhalation on The Concentrations of The Brain Monoamines and Metabolites (톨루엔 흡입이 뇌중 Monoamine 및 그대사물의 농도에 미치는 영향에 관한 연구)

  • 김대병;이종권;정경자;윤여표
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.495-500
    • /
    • 1998
  • The effect of acute toluene exposure on behaviour and monoamine concentrations in the various brain regions were investigated in the rat. Toluene was adminstered via inhalation to rats at concentrations of 0, 1000, 10000, 40000 ppm for 20 min. During exposure to toluene, spontaneous locomotor activity was counted. After exposure, animals were sacrificed instantly and brains were separated. Regional concentratons of brain monoamines (norepinephrine, NE; dopamine, DA; 5- hydroxytryptamine, 5-HT) and its metabolites (3,4-dihydroxyphenylacetic acid, DOPAC; homovanillic acid, HVA; 5-hydroxyindole-3-acetic acid, 5-HIAA) were determined. The changes in locomotor activity during toluene exposure depended on the toluene concentration. At 1000 ppm concentration, spontaneous locomotor activity increased initially and thereafter decreased. At higher concentrations (10000 ppm and 40000 ppm), spontaneous locomotor activity decreased and eventually ceased. A regional analysis of VA, NE, 5-HT, VOPAC, HVA, and 5-HIAA indicated a significant decrease in VA concentrations in cerebellum and striatum while NE and 5-HT concentrations were significantly increased in the cerebellum and cortex. 5-HIAA concentrations were significantly increased in all brain regions. DOPAC concentrations were significantly increased in cerebellum and cortex while decreased in striatum. These results especially indicated that metabolic conversion of DA to HVA in striatum was highly increased by toluene inhalation. However, It remains to elucidate between behavioural responses and monoamine changes.

  • PDF

Study on the Regulation of KAP3 Gene Involved in the Brain Sexual Differentiation by DDT during the Critical Period of Fetal and Neonatal Age (출생 전.후 뇌의 성분화 결정시기에 DDT에 의한 KAP3 유전자 조절에 대한 연구)

  • 강한승;전부일;최은정;이병주;이채관;강성구
    • Development and Reproduction
    • /
    • v.4 no.1
    • /
    • pp.95-100
    • /
    • 2000
  • A large number of man-made chemicals that have been released into the environment have the potential to disrupt the endocrine system of animals and humans. There is a critical developmental period during which sexual brain differentiation proceeds irreversibly under the influence of gonadal hormone. Recently we identified KAP3 gene expressed during the critical period of rat brain sexual differentiation. KAP3 functions as a microtubule-based motor that transports membranous organelles anterogradely in cells, including neurons. In the present study, we aimed to investigate the effect of endocrine disrupter, Dichlorodiphenyl trichloroethane (DDT), on the KAP3 gene expression during critical period of rat brain development. Maternal exposure to DDT increased the level of KAP3 mRNA in male and female fetus brains when examined on the gestational day 17 (GDl7). In postnatal day 6, DDT suppressed the expression of KAP3 gene in male and female rat brain. Also, the body weight and fertilization rate were decreased in the DDT exposured rats. These results showed that endocrine disrupter, DDT, can affect the transcriptional level of brain sexual differentiation related gene, KAP3, in the prenatal and the neonatal rat brain and that maternal exposure to endocrine disruptors may lead to a toxic response in embryonic differentiation of brain. And so KAP3 gene may be used a gene maker to analyse the molecular mechanism for toxic response in animal nerve tissues exposed to endocrine disruptors.

  • PDF

Effect of Maternal Dietary $\omega$3 and $\omega$6 Polyunsaturated Fatty Acids on the Fatty Acid Composition of the Second Generation Rat Brain (어미 쥐의 $\omega$3계 및 $\omega$6계 지방산 식이가 제2세대 쥐의 뇌조직 지방산 성분에 미치는 영향)

  • 김미경
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.661-671
    • /
    • 1993
  • The change in fatty acid composition in brain tissue of the second generation rats(Sprague-Dawley strain) was studied using four different fat diets(Corn oil=CO, Soybean oil=SO, Perilla oil=PO, Fish oil=FO, 10% by Wt). The experimental diets were started from pregnancy in four different groups, each consisting of 9 rats. The seound generation rats were fed the same diet as their mothers. Animals were anesthetized with ether at 0, 3, 9 & 16 weeks of age. Whole brains were dissected out, brain tissues were, then, homogenized and lipids were extracted from brain tissues. The fatty acid compositions were measured after methylation by gas-liquid chromatography at 0, 3, 9 and 16 weeks of age of offspring. The changes in the relative concentrations of polyunsaturated fatty acids(PUFA) or more specifically docosahexaenoic acid(22 : 6, $\omega$3, DHA), the major $\omega$3 fatty acid component in rat brain at different age were similar to changes in the amount of DNA in brain tissue showing the maximum value during the lactation. The changes in saturated fatty acid(SFA) content showed a contrasting patten to those of PUFA, while monounsaturated fatty acid(MUFA) increased steadily throughout the experimental period. At birth, the relative concentrations of $\omega$3 series fatty acids the relative concentrations of PUFA, MUFA and SFA converged to very similar values respectively regardless of the dietary fatty acid compositions. In brain tissue, it is of value to note that while changes in relative concentrations of linoleic acid (18 : 2, $\omega$6, LA) and arachidonic acid(20 : 4, $\omega$6, AA) showed a precursor-product-like relationship, $\alpha$-linolenic acid(18 : 3, $\omega$3, $\alpha$-LnA) and DHA showed a different pattern. Even when the $\omega$3 fatty acid content in very low in maternal diet(CO), the second generation rat brain tissues appeared to secure DHA content, suggesting an essential role of this fatty acid in the brain. The fact that a large amount of $\alpha$-LnA in the maternal diet did not have a significant effect on the second generation rat brain $\alpha$-LnA content, indicated that DHA seemed essential component for the brain development in our experimental condition. In all groups, the relative content of $\alpha$-LnA in the brain tissues remained relatively constant throughout the experimental period at the very low level. The study of the specific concentrations and essential role(s) of DHA in each parts of brain tissue is needed in more details.

  • PDF

Studies on Early Protein Undernutrition of Rats (유유기백서서(乳幼期白鼠)의 단백질부족(蛋白質不足)에 관(關)한 영양학적(營養學的) 연구(硏究))

  • Yu, Jong-Yull
    • Journal of Nutrition and Health
    • /
    • v.2 no.4
    • /
    • pp.113-125
    • /
    • 1969
  • These experiments were designed to study the influence of early protein undernutrition on growth, behaviors toward food, general attitude toward a new environment, brain size and body composition of the experimental rats. The following experimental groups were studied. Lactation period (3 weeks) (Diets of mother rats) 25% Casein diet 12% Casein diet 25% Casein diet 25% Casein diet 12% Casein diet 12% Casein diet After-weaning protein deprivation period None deprivation (25% Casein diet) None deprivation (25% Casein diet) 5% Casein diet (4 weeks) 5% Casein diet (8 weeks) 5% Casein diet (4 weeks) 5% Casein diet (8 weeks) After a long period of rehabilitation with 25% casein diet the following results were obtained. 1. Growth rate during lactation period is closely related with the protein levels of the diet for mother rats. The average body weight of offsprings of the mother rat fed 25% casein diet is 46.0 grams at 21 days old. However, that of the mother rat fed 12% casein diet is only 25.0 grams. 2. The group of protein undernutrition during lactation (S weeks) (offsprings of mother rat fed low protein diet, 12% casein diet) could never catch up with the normal group in its growth even after twenty-four (24) weeks of rehabilitation. 3. However, the groups of protein undernutrition during either four (4) or even eight (8) weeks after weaning could catch up with the normal group in their growth after long period of rehabilitation. 4. The absolute amounts of carcass protein and fat of the normal group are larger than those of the protein deficient groups. In terms of percent carcass, however, the normal group showed higher body fat and lower body protein than the early deficient groups. However, there is no difference between preweaning (3 weeks) and postweaning (8 weeks) deficient groups. It is assumed, from these differences in body composition, that there might be any differences in physiological and metabolic functions among these various groups, and also that the basic formation of various metabolic regulators (protein-nature) might be fixed mostly during lactation and postweaning period. 5. The groups of protein undernutrition during either three (3) weeks lactation or four (4) weeks after weaning are not so remarkably different from the normal group in their amounts of food intake and spillage. However, the groups of undernutrition during either eight (8) weeks postweaning or eleven (11) weeks (3 weeks lactation period plus 8 weeks postweaning period) showed higher amounts of food intake and spillage. In these respects, it seems that desire for food is closely related with the degree of early hunger in protein and also seems that the longer be deficient in early life the more food spillage is found. 6. Both preweaning and postweaning deficient groups showed generally nervous and restless. The normal group is staid and showed less mobilities. 7. The average size of the brains of the group subjected to protein deficiency during three (3) weeks lactation period is smaller than that of the group of the eight (8) weeks postweaning deficiency. This means that the development of the brain is made mostly during lactation period. The group of the eleven (11) weeks postnatal deficiency is significantly different from the normal group in its brain development. It is assumed, in connection with the results of various maze tests reported, that the brain size is closely related with the intellectual ability.

  • PDF

Influence of Aqua and Balance Exercise on Tyrosine Hydroxylase Expression in the Substantia Nigra and Functional Recovery in Hemiparkinsonian Rat Model (수중 및 균형 운동이 파킨슨 유발 백서모델에서 중뇌 흑질의 Tyrosine Hydroxylase 발현과 기능 회복에 미치는 영향)

  • Lee, Hyun-Min;Kim, Bum-Soo
    • Development and Reproduction
    • /
    • v.15 no.2
    • /
    • pp.143-150
    • /
    • 2011
  • The objective of this study was to determine the effect of exercise on a hemiparkinsonian rat model. Nigrostriatal dopamine cell lesions were produced by injecting 6-hydroxydopamine at the left medial forebrain bundle of rats. In this study, the rats were divided into the following 4 groups: the control group without any exercise, experimental group I with aqua-exercise (Exp I), experimental group II with balance exercise (Exp II) and experimental group III with complex exercise (aqua-exercise+balance exercise; (Exp III)). Exercises were applied to all the experimental groups after the operation. In order to observe the dopaminergic cell loss, we assessed the level of tyrosine hydroxylase (TH) expression in the midbrain of rats, and performed the apomorphine-induced rotation test at postoperative days (PDs) 7, 14, and 21. Experimental groups had significantly higher TH-immunoreactivity and behavioral performance than the control group. However, there was no difference in TH-immunoreactivity and behavioral performance across the experimental groups. These results suggest that the application of aqua-exercise and balance exercise could suppress dopaminergic cell loss in the substantia nigra of rat brains and could increase behavioral recovery in hemiparkinsonian rats.