• Title/Summary/Keyword: Rat brain mitochondrial MAO

Search Result 8, Processing Time 0.019 seconds

1-Methyl Substituent and Stereochemical Effects of 2-Phenylcyclopropylamines on the Inhibition of Rat Brain Mitochondrial Monoamine Oxidase A and B

  • Kang, Gun-Il;Hong, Suk-Kil;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.10 no.1
    • /
    • pp.50-59
    • /
    • 1987
  • (E)-2-Phenylcyclopropylamine ((E)-TCP), (Z)-2-Phenylacyclopropylamine ((Z)-TCP), (E)-1-methyl-2-phenylcyclopropylamine ((E)-MTCP), and (Z)-1-methyl-2-phenylcyclopropylamine ((Z)-MTCP) were synthesized and used to determine to what extent 1-methylsubstitution and stereochemistry of 2-phenycyclopropylamines affect inhibition of monoamine oxidase (MAO). Inhibition of rat brain mitochondrial MAO-A and B by the compounds were measured using serotonin and benzylamine as the substrate, respectively and $IC_{50}$ values obtianed with 95% confidence limits by the method of computation. For the inhibition of MAO-A, (E)-MTPC ($IC_{50}$ = 6.2 * $10^{-8}$M) was found to be 37 times more potent than (Z)-MTCP ($IC_{50}$ = 7.8 * $10^{-8}$M), was 7 times more potent than (Z)-MTCP($IC_{50}$= 4.7 * $10^{-7}$M) and (E)-TCP($IC_{50}$ =7.8 * $10^{-8}$M),0.6 times as potent as (Z)- TCP ($IC_{50}$ = 4.4 * $10^{-8}$M). The results suggested that while without 1-methyl group, potency of a (Z)-isomer was comparable to that of (E)-isomer, the methyl group in its (Z)-position was very unfavorable to the inhibition of MAO and that in its (E)-position, the methyl group contributed positively to the potency as found by the fact that (E)-MTCP was 1-5 times more potent than (E)-TCP. In view of the selective inhibition of MAO-A- or B over MAO-A and 1-methyl substitution as well as the stereochemical factors did not significantly influence the selectivity.

  • PDF

Effects of Higenamine and Its Derivatives on the Activity of Rat Brain Mitochondrial Monoamine Oxidase (Higenamine과 그 유도체들이 흰쥐 미토콘드리아 Monoamine Oxidase 활성에 미치는 영향)

  • Suh, Yoo-Hun;Park, Hae-Young;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.73-80
    • /
    • 1984
  • The effect of higenamine and its derivatives on the activity of rat bran mitochondrial monoamine oxidase(MAO) was studied. Methoxyhigenamine of drugs tested had no effect on isometric contraction of heart and reversibly inhibited MAO towards 5-hydroxytryptamine(5-HT) and phenylethylamine(PEA) in a pure competitive fashion and in a hyperbolic mixed fashion, respectively, but was found to be relatively MAO-A selective inhibitor, with IC50 value for 5-HT lower ten fold than for PEA. The results suggest that methoxyhigenamine is a reversible, relatively MAO-A specific inhibitor in virto.

  • PDF

Synthesis of Two Nitro Analogs of Tranylcypromine: Relations of Aromatic Substitution of Nitro Groups to MAO-Inhibitory Activity

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • v.11 no.1
    • /
    • pp.33-40
    • /
    • 1988
  • Two new nitro analogs of tranylcypromine, (E)-2-(p-nitrophenyl)cyclopropylamine ((E)-p-NTCP) and (E)-2-(m-nitrophenyl)cyclopropylamine ((E)-m-NTCP) were synthesized in order to examine the effect of aromatic nitro substitution on the MAO-inhibitory activity of 2-phenylcyclopropylamines. The compounds were obtained by treating t-butyl (E)-2-(p-nitrophenyl) cyclopropanecarbamate and t-butyl (E)-2-(m-nitrophenyl)cyclopropanecarbamate with p-toluenesulfonic acid in $CH_3$CN. Inhibitions of rat brain mitochondrial MAO-A and B by the compounds were examined using serotonin and benzylamine as the substrate at both in vitro and ex vivo levels. It was found from in vitro measurements that (E)-p-NTCP at $6.0{\times}10^{-5}M$ elicited merely 22.5% inhibition against MAO-B without any effect on MAO-A. In contrast, (E)-m-NTCP showed fair degrees of inhibitions of MAO-A and B with $IC_{50}$ values, $2.5{\times}10^{-7}M\;and\;1.4{\times}10^{-6}M$, respectively. It was also noted from (E)-m-NTCP that m-nitro substitution caused a shift of selectivity of the inhibition toward MAO-A. According to ex vivo measurements at 1.5, 3, 6, and 12 hr following the administration of a dose of 0.015 mmol/kg, i.p. to the rats, the inhibition percents of MAO-A by (E)-m-NTCP were 58.6, 63.7 63.6, and 46.6%, slightly lower than those observed by tranylcypromine. Whereas, (E)-m-NTCP at the same dose level did not show significant inhibitions against both MAO-A and MAO-B. Possible reasons for the difference in potencies between (E)-m-NTCP and (E)-p-NTCP were sought in relation to differing electron withdrawing effects of m- and p-substituents which will influence electron density of the side chain amino functions and the partitions.

  • PDF

Effect of ${\gamma}-ray$ Irradiation on the Activities of Monoamine Oxidase in Rat Brain and Liver (방사선 조사가 쥐의 뇌와 간의 Monoamine Oxidase 활성도에 미치는 영향)

  • Kim, Joo-Young;Choi, Myung-Sun;Choi, Myung-Un
    • Radiation Oncology Journal
    • /
    • v.11 no.2
    • /
    • pp.205-217
    • /
    • 1993
  • In order to evalute the effects of radiation on mammalian neuronal system, we have examined the effect of gamma-ray radiation on the monoamine oxidase (MAO) activity in monoaminergic neurons. Following the whole body irradiation, MAO activity in the rat brain was measured as well as in the liver for the comparative studies between the neuronal and nonneuronal system. The effects of some radiation protectors and sensitizers were also examined in addition to the $O_2$ effect. The results can be summarized as follows. 1) The MAO activity of rat brain was minimally affected by the radiation dose up to 1,700 cGy Radiation dose above 2,500 cGy inhibited the brain MAO activity by no less than $l0\%.$ MAO-A form was found to be particularly sensitive to radiation. The liver MAO was somewhat inhibited (by about $5\%$) but hardly dependent on the dose of radiation. 2) The inhibitory effect on the brain was initiated immediately by the radiation dose of 2,500 cGy. On the contrary, for the liver, the inhibitory effect became apparent only 2 days after irradiation. 3) Two days after a dose of 2,500 cGy, Vmax and Km of the brain mitochondrial MAO decreased. For liver, Vmax decreased while Km increased, which indicates the kinetic patterns for the neuronal and nonneruronal systems are not affected similarly by radiation. 4) The effect of several known radiation protectors and sensitizers on MAO activity was tested ut no definite results were obtained. The level of -SH group increased in some degree upon radiation but not by the compounds. 5) MAO activity was not affected by $O_2$ concentration, while an elevated level of lipid peroxidase was found under the same condition. The results described here indicate that characteristics of MAO, one of the most important central nervous system enzymes, are liable to radiation, which is partially differentiated from the liver MAO. Also indicated are that the -SH groups are hardly related to the effect of radiation but the production of the lipid peroxide seems to be somewhat correlated to the effect of radiation.

  • PDF

Screening of Inhibitory Activity of Edible Mushrooms on the Monoamine Oxidase (모노아민 산화효소에 대한 식용버섯류의 저해활성 검색)

  • Hwang, Keum-Hee;Kim, Hyun-Ku;Han, Yong-Nam
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.156-160
    • /
    • 1997
  • The monoamine oxidase (MAO, EC 1.4.3.4) plays a central role in the metabolism of many amines including the neurotransmitter monoamines. MAO is a flavoprotein found exclusively in the mitochondrial outer membrane, occuring in the MAO-A and MAO-B subtypes. MAO-A deaminates serotonin and noradrenaline much better than phenethylamine (PEA) or benzylamine (BA), and is preferentially inhibited by clorgyline, whereas MAO-B prefers PEA and BA as substrates and is preferentially inhibited by deprenyl. MAO inhibitors were among the first drugs used in the treatment of depression, and it is known to be the inhibition of MAO-A which is important for the antidepressant effect of MAO inhibitors. For the purpose of evaluating MAO inhibitory activities from natural resources, three kinds of edible mushrooms were screened by tracing the inhibitory activities against rat brain mitochondrial MAO-A, utilizing serotonin as a substrate and rat liver mitochondrial MAO-B utilizing benzylamine as a substrate. Among the tested mushrooms, Ganoderma lucidium and Lentinus edodes showed the weak inhibitory activities against MAO-B.

  • PDF

Quantitative Structure-Activity Relationships in MAO-Inhibitor~' 2-Phenylcyclopropylarnines: Insights into the Topography of MAO-A and MAO-B

  • Kang, Gun-Il;Hong, Suk-Kil
    • Archives of Pharmacal Research
    • /
    • v.13 no.1
    • /
    • pp.82-96
    • /
    • 1990
  • Ten (E)-and (Z)-isomers of 2-phenylcyclopropylamine (PCA), 1-Me PCA, 2-Me-PCA, N-Me-PCA, and N, N-diMe PCA and fifteen o-. m-, p- isomers of (E) PCA with substituents of Me, Cl, F, OMe, OH were synthesized in this laboratory and tested for the inhibition of rat brain mitochondrial MAO-A and MAO-B. The effects of substituents, their positions, and stereochemistry on the inhibition were assessed for the compounds with substituents at cyclopropyl and amino groups and QSAR analyses were performed using the potency data of ring-substituted compounds. The best correlated QSAR equations are as follows : pI$_{50}$ = 0.804 $\pi^2$-0.834 Blo-1.069 Blm + 0.334 Lp-1.709 HDp +7.897 (r = 0.945, s =0.211, F = 16.691, p = 0.000) for the inhibition of MAO-A;PI$_{50}$= 1.815$\pi$-0.825 $\pi^2$-1.203R + 0.900 Es$^2$ + 0.869 Es$^3$ + 0.796 Es$^4$-0.992 HDp + 0.562 HAo + 3.893 (r = 0.982, s =0.178, F = 23.351, p = 0.000) for the inhibition of MAO-B. Based on the potency difference between stereoisomers of cyclopropylamine-modified compounds and an QSAR cavity near para position, two hydrophobic carities interacting with Me group, a hydrophobic site near para position, and an amino group binding site and that in addition to the same two hydrophotic cavities, hydrophotic area, steric boundaries, hydrogen-acceptor site, and amino group binding site, another steric boundary near para position and a hydrogen donating site near ortho position constitute active sites of MAO-B.

  • PDF

Detection of N-Acetyltranylcypromine and Glucuronide of Phenyl-Hydroxylated N-Acetyltranlcypromine from Tranylcypromine-Dosed Rat Urine : Pharmacological Implications

  • Kang, Gun-Il;Choi, Hee-Kyung
    • Archives of Pharmacal Research
    • /
    • v.9 no.2
    • /
    • pp.99-110
    • /
    • 1986
  • In order to use for metabolic studies of tranylcypromine (TCP), TCP-phenyl-$d_{5}$ was synthesized via the intermediates, 3-benzoylpropionic acid-$d_{5}$ and trans-2-phenylcyclopropanecarboxylic acid-$d_{5}$ -TCP(0.22 mmole/kg) and its deuterated analog were administered s. c. to the rats and GC/MS analyses of the urines led to the detection of N-acetyltranylcypromine (ATCP) and glucuronide conjugate of phenyl-hydroxylated ATCP. MAO activities in rat brain were measured using serotonin as the substrate. In vitro $IC_{50}$ of ATCP was determined to be $10^{-3}M$. The inhibitions by ATCP were not dependent on the preincubation time and were reversed by washing sedimented mitochondrial pellets after the preincubation. In vivo MAO inhibitions at various times of 0.5, 1.5, 3, 6, 12, and 23 hr after the administration of 0.4 mmole/kg (i. p. ) of ATCP were found to be 0.13, 73, 90, 89, and 74 %, respectively. Similarly, the inhibition percents by 0.015 mmole/kg (i. p. ) of TCP were 94, 99, 95, 91, 71 and 49%. The results strongly suggest that deacetylated product of ATCP may account for its in vivo MAO inhibition. The relationship between the metabolism via phenyl-hydroxylation and the in vivo potency of TCP was examined by QSAR study and it was found that groupings discriminating between the compounds with p-substituents and those without them only ensure high correlations, suggesting that ring-hydroxylation which occurs at the para position in most of the compounds is a determining factor to the potency of TCP.

  • PDF

Isolation of Monoamine Oxidase B Inhibitory Compound from the Leaves of Eucommia ulmoides Oliv. (두충(Eucommia ulmoides Oliv.)잎으로부터 Monoamine Oxidase B 억제활성물질의 분리)

  • Ahn, Eun-Mi;Hahn, Jae-Taek;Lee, Dong-Wook;Sohn, Hyung-Ok;Kwon, Byoung-Mog;Baek, Nam-In
    • Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.166-169
    • /
    • 1999
  • The repeated silica gel colum chromatographies of n-BuOH fraction obtained from MeOH extracts of Eucommia ulmoides leaves led to isolation of a flavonoid-glycoside inhibiting monoamine oxidase B activity. Its chemical structure was determined to be $3-O-[{\beta}-D-glucopyranosyl\;(1{\rightarrow}2)\;{\beta}-D-xylopyranosyl]$ quercetin through interpretation of spectral data and adaptation of acid hydrolysis. The $IC_{50}$ value of this compound in rat brain mitochondrial MAO-B inhibitory activity was evaluated to be $8.05\;{\mu}mol/l$.

  • PDF