• Title/Summary/Keyword: Rat Brain

Search Result 1,025, Processing Time 0.027 seconds

Molecular Cloning and Recombinant Expression of the Long Form of Leptin Receptor (Ob-Rb) cDNA as Isolated from Rat Spleen

  • Ju, Sung-Kyu;Park, Jung-Hyun;Na, Shin-Young;You, Kwan-Hee;Kim, Kil-Lyong;Lee, Myung-Kyu
    • BMB Reports
    • /
    • v.34 no.2
    • /
    • pp.156-165
    • /
    • 2001
  • Leptin is a circulating non-glycosylated protein that is mainly produced in adipocytes. Leptin acts in the brain to regulate food intake and energy expenditure. Previously we reported our success in the isolation of a partial cDNA of the long form of the leptin receptor, OB-Rb, from rat spleen, and showed that leptin might also play a role in peripheral immune organs. In the present study, for the first time, the complete coding region of OB-Rb cDNA was cloned from rat splenocytes, and its nucleotide sequence was determined. The cDNA was then further expressed in E. coli and mammalian cells, thereby confirming the functional integrity of this receptor. Prokaryotically overexpressed OB-R protein was then used as an immunizing antigen in BALE/c mice to produce leptin receptor-specific antibodies. By using them, we confirmed the cell surface expression of OB-Rb in transfected CHO cells. It is our belief that the reagents, as produced in this study, will be of great use in further studies of the biological role of rat leptin.

  • PDF

A New Assay Method for Spermidine and Spermine Synthases Using Antibody Against MTA

  • Lee, Sung-Ho;Cho, Young-Dong
    • BMB Reports
    • /
    • v.30 no.6
    • /
    • pp.443-447
    • /
    • 1997
  • We have developed a novel method for assays of spermidine and spermine synthase (aminopropyltransferase) activities using antibody against 5'-deoxy-5'-methylthioadenosine (MTA). A new assay is reported here which is based on the observation that MTA is formed as a stoichiometric by-product of the spermidine and spermine synthases reactions. In order to determine MTA, a radioimmunoassay method with sensitivity and rapidity was used. (Lee and Cho, 1997). In this assay, adenine must be added in the reaction mixture, since it effectively inhibits the action of MTA phosphorylase by which MTA is metabolized. This assay is a improvement in term of sensitivity and time saving, compared to the currently used methods. It has a level of sensitivity (100 fmol) sufficient to monitor aminopropyltransferase activities in incubations containing as little as $10{\mu}g$ protein prepared from rat tissue homogenate. The results obtained showed that this method is particularly useful for cultured cells with low enzyme concentration. Moreover, this assay has the advantage which allows studies using alternative substrates (other amines). Spermidine synthase activity was high in rat liver, but low in rat kidney. The activity of spermine synthase was in most rat tissues very low as compared to that of spermidine synthase, but was high in brain.

  • PDF

Molecular Biology of Human and Rat Genomic DNAs for Eponephrine Synthesizing Enzyme (사람과 쥐의 에피네프린 합성효소의 게놈DNA에 대한 분자 생물학)

  • 서유헌;김헌식
    • Korean Journal of Cognitive Science
    • /
    • v.1 no.2
    • /
    • pp.361-376
    • /
    • 1989
  • Norepoine is N-methylated by the enzyme phenly ethanolamine N-metyltransferase(PNMT)to form epinephrine.this enzyme is larhly restructed to the adrenal medulla where epinephrine in mammalian brain where epinephrine function as a neurotransmitter.It seems clear that central epinephrine is involved in the regulation of cardiovacular function and in several forms of hypertension.However,information about the struture of mammalian epinephrine forming enzyme has been limited until now.But recently we isolate bovine and human PNMT cDNA clone using gtll expression library and sequcde total nucleotide composition.To obtain information about the structrue of the human and rat PNMT proteins and gones and to further define the extent of the evolutionary relationships among the PNMT molecules of these species human and rat genomic DNA clones to PNMT were sequentially isolated and characterized.

Localization of Transferrin mRNA in Rat by DNA/RNA Hybridization (DNA/RNA Hybridization에 의한 흰쥐의 Transferrin mRNA 분포에 관한 연구)

  • Kim, Se-Eun;Kim, Sun-Yeou;Park, Mi-Jung;Song, Jin-Ho;Lee, Eun-Bang;Lee, Heun-Pa;Kim, Young-Choong
    • YAKHAK HOEJI
    • /
    • v.33 no.5
    • /
    • pp.300-307
    • /
    • 1989
  • Expression of transferrin gene in various organs of rat was studied using rat transferrin cDNA. The hybridization method of $[^{35}S]-labeled$ transferrin cDNA with transferrin mRNA in cytoplasmic preparations was used to measure the level of transferrin mRNA. The rat from 15-day old fetus to 21-day old postnatal were employed as an animal model. In the liver, the level of transferrin mRNA increased with increasing age. However, the level of transferrin mRNA in brain was significantly lower than that in liver and the level did not increase with age.

  • PDF

Expression of Cytokines in Radiation Injured Brain at Acute Phase

  • Lee, Jang-Bo;Kim, Min-Ho;Chung, Yong-Gu;Park, Jung-Yul
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2007
  • Objective : Radiation therapy is an important treatment for brain tumor. However, serious complications such as radiation necrosis can occur and it may be secondary to the expression of acute phase genes, like cytokines. In particular, inflammatory cytokines (IL-$1{\beta}$, TNF-${\alpha}$) and other immunomodulatory cytokines (TNF-${\alpha}$, TGF-${\beta}1$) might be changed after irradiation (high single dose irradiation). Although it has been reported that IL-1 level is remarkably elevated within 8 week after the irradiation to the rat brain. the change of cytokines levels at acute phase (within 24 hours) has not been reported. In the present study, we examined TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$ levels in acute phase to clarify the early effect of cytokines on the radiation-induced brain damage. Methods : Fifty Sprague-Dawley rats were used and these were divided into irradiation group and control group. After a burr-hole trephination on the right parietal area using a drill, a single 10Gy was irradiated at the trephined site. Their forebrains were extirpated at 30 min, 2 hr, 8 hr, 12 hr and 24 hr, respectively and examined for the expression of TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$. Results : The expression of TNF-${\alpha}$ and TGF-${\beta}1$ were decreased until 12 hr after irradiation but elevated thereafter. The expression of IL-1 was peak at 8 hr and then decreased until 12 hr but elevated after this time window. The present study indicated that expression of cytokines (TNF-${\alpha}$, TGF-${\beta}1$ and IL-$1{\beta}$) were increased at 24 hr after the irradiation to the rat brain. IL-$1{\beta}$ level, on the other hand. reached peak at 8 hr after radiation injury. Conclusion : These findings indicate that IL-1, among various cytokines, may have a more important role in the inflammatory reaction by radiation injury at acute phase and provide some clues for better understanding of the pathogenesis of radiation injury.

Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model (상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향)

  • Lee, Ae Ryoung;Yoon, Mi Ok;Kim, Hyun Hae;Choi, Jae Moon;Jeon, Hae Yuong;Shin, Jin Woo;Leem, Jeong Gill
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.

Characterization of Norepinephrine Release in Rat Posterior Hypothalamus Using in vivo Brain Microdialysis

  • Sung, Ki-Wug;Kim, Seong-Yun;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.1
    • /
    • pp.9-14
    • /
    • 2002
  • In the present study, we used the microdialysis technique combined with high performance liquid chromatography (HPLC) and electrochemical detection to measure the extracellular levels of norepinephrine (NE) in the posterior hypothalamus in vivo, and to examine the effects of various drugs, affecting central noradrenergic transmission, on the extracellular concentration of NE in the posterior hypothalamus. Microdialysis probes were implanted stereotaxically into the posterior hypothalamus (coordinates: posterior 4.3 mm, lateral 0.5 mm, ventral 8 mm, relative to bregma and the brain surface, respectively) of rats, and dialysate collection began 2 hr after the implantation. The baseline level of monoamines in the dialysates were determined to be: NE $0.17{\pm}0.01,$ 3,4-dihydroxyphenylacetic acid (DOPAC) $0.94{\pm}0.07,$ homovanillic acid (HVA) $0.57{\pm}0.05$ pmol/sample (n=8). When the posterior hypothalamus was perfused with 90 mM potassium, maximum 555% increase of NE output was observed. Concomitantly, this treatment significantly decreased the output of DOPAC and HVA by 35% and 28%, respectively. Local application of imipramine $(50\;{\mu}M)$ enhanced the level of NE in the posterior hypothalamus (maximum 200%) compared to preperfusion control values. But, DOPAC and HVA outputs remained unchanged. Pargyline, an irreversible monoamine oxidase inhibitor, i.p. administered at a dose of 75 mg/kg, increased NE output (maximum 165%), while decreased DOPAC and HVA outputs (maximum 13 and 12%, respectively). These results indicate that NE in dialysate from the rat posterior hypothalamus were neuronal origin, and that manipulations which profoundly affected the levels of extracellular neurotransmitter had also effects on metabolite levels.

The Region of Distribution of Barbiturates in Synaptosomal Plasma Membrane Vesicles Isolated from Rat Brain as Studied by Fluorescence Quenching (Barbiturates가 생체세포막 외측 단층의 소수성 부위와 친수성 부위에 분포되는 상대적 비율)

  • Yun, Il;Lee, Byung-Woo
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.3
    • /
    • pp.271-278
    • /
    • 1995
  • The relative distribution ratio of barbiturates between hyarocarbon interior and surface region of outer monolayer of synaptosomal plasma membrane vesicles (RSPMV) isolated from rat whole brain was determined by employing the fluorescent probe technique. The two fluorescent probes N- octadecylnaphthyl-2-amine-6-sulfonic acid (ONS) and 12-(9-anthroyloxy) stearic acid (AS) were utilized as probes for hydrocarbon interior and surface of outer monolayer of RSPMV. respectively. The Stern-Volmer equation for fluorescent quenching was modified to calculate the relative distribution ratio. The analysis of preferential quenching of these probes by barbiturates indicates that pentobarbital, hexobarbital, amobarbital and phenobarbital are predominantly distributed on the surface region. whereas thiopental sodium has an accessibility to the hydrocarbon interior of the outer monolayer of the RSPMV. From these results, it is strongly suggested that the more effective penetration into the hydrocarbon interior of the outer monolayer of the membrane lipid bilayer could result in higher general anesthetic activity.

  • PDF

Dopamine Modulates Corticostriatal Synaptic Transmission through Both $D_1$ and $D_2$ Receptor Subtypes in Rat Brain

  • Lee, Hyun-Ho;Choi, Se-Joon;Kim, Ki-Jung;Cho, Hyeong-Seok;Kim, Seong-Yun;Sung, Ki-Wug
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.5
    • /
    • pp.263-268
    • /
    • 2005
  • Striatum has important roles in motor control, habitual learning and memory. It receives glutamatergic inputs from neocortex and thalamus, and dopaminergic inputs from substantia nigra. We examined effects of dopamine (DA) on the corticostriatal synaptic transmission using in vitro extracellular recording technique in rat brain corticostriatal slices. Synaptic responses were elicited by stimulation of cortical glutamatergic inputs on the corpus callosum and recorded in the dorsal striatum. Corticostriatal population spike (PS) amplitudes were decreased ($39.4{\pm}7.9$%) by the application of $100{\mu}M$ DA. We applied receptor subtype specific agonists and antagonists and characterized the modulation of corticostriatal synaptic transmission by different DA receptor subtypes. $D_2$ receptor agonist (quinpirole), antagonist (sulpiride), and $D_1$ receptor antagonist (SKF 83566), but not $D_1$ receptor agonist (SKF 38393), induced significantly the reduction of striatal PS. Pretreatment neither with SKF 83566 nor sulpiride significantly affected corticostriatal synaptic inhibition by DA. However, the inhibition of DA was completely blocked by pretreatment with mixed solution of both SKF 83566 and sulpiride. These results suggest that DA inhibits corticostriatal synaptic transmission through both $D_1$ and $D_2$ receptors in concert with each other.

Protection of the brain through supplementation with larch arabinogalactan in a rat model of vascular dementia

  • Lim, Sun Ha;Lee, Jongwon
    • Nutrition Research and Practice
    • /
    • v.11 no.5
    • /
    • pp.381-387
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Vascular dementia (VaD) caused by reduced blood supply to the brain manifests as white matter lesions accompanying demyelination and glial activation. We previously showed that arabinoxylan consisting of arabinose and xylose, and arabinose itself attenuated white matter injury in a rat model of VaD. Here, we investigated whether larch arabinogalactan (LAG) consisting of arabinose and galactose could also reduce white matter injury. MATERIALS/METHODS: We used a rat model of bilateral common carotid artery occlusion (BCCAO), in which the bilateral common carotid arteries were exposed and ligated permanently with silk sutures. The rats were fed a modified AIN-93G diet supplemented with LAG (100 mg/kg/day) for 5 days before and 4 weeks after being subjected to BCCAO. Four weeks after BCCAO, the pupillary light reflex (PLR) was measured to assess functional consequences of injury in the corpus callosum (cc). Additionally, Luxol fast blue staining and immunohistochemical staining were conducted to assess white matter injury, and astrocytic and microglial activation, respectively. RESULTS: We showed that white matter injury in the the cc and optic tract (opt) was attenuated in rats fed diet supplemented with LAG. Functional consequences of injury reduction in the opt manifested as improved PLR. Overall, these findings indicate that LAG intake protects against white matter injury through inhibition of glial activation. CONCLUSIONS: The results of this study support our hypothesis that cell wall polysaccharides consisting of arabinose are effective at protecting white matter injury, regardless of their origin. Moreover, LAG has the potential for development as a functional food to prevent vascular dementia.