• Title/Summary/Keyword: Raster GIS

Search Result 94, Processing Time 0.027 seconds

A Study on the Accuracy of Calculating Slopes for Mountainous Landform in Korea Using GIS Software - Focused on the Contour Interval of Source Data and the Resolution - (GIS Software를 이용한 한국 산악 지형의 경사도 산출 정확도에 관한 연구 -원자료의 등고선 간격과 해상력을 중심으로-)

  • 신진민;이규석
    • Spatial Information Research
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • The DTM(Digital Terrain Model) in GIS(Geographical Information System) shows the elevation from interpolation using data points surveyed. In panoramic flat landform, pixel size, resolution of source data may not be the problem in using DTM However, in mountainous landform like Korea, appropriate resolution accuracy of source data are important factors to represent the topography concerned. In this study, the difference in contour interval of source data, the resolution after interpolation, and different data structures were compared to figure out the accuracy of slope calculation using DTM from the topographic maps of Togyusan National Park Two types of GIS softwares, Idrisi(grid) ver. 2.0 using the altitude matrices and ArcView(TIN) ver. 3.0a using TIN were used for this purpose. After the analysis the conclusions are as follows: 1) The coarser resolution, the more smoothing effect inrepresenting the topography. 2) The coarser resolution the more difference between the grid-based Idrisi and the TIN-based ArcView. 3) Based on the comparison analysis of error for 30 points from clustering, there is not much difference among 10, 20, 30 m resolution in TIM-based Airview ranging from 4.9 to 6.2n However, the coarser resolution the more error for elevation and slope in the grid-based Idrisi. ranging from 6.3 to 10.9m. 4) Both Idrisi and ArcView could net consider breaklines of lanform like hilltops, valley bottoms.

  • PDF

Program Design and Implementation for Efficient Application of Heterogeneous Spatial Data Using GMLJP2 Image Compression Technique (GMLJP2 영상압축 기술을 이용한 다양한 공간자료의 효율적인 활용을 위한 프로그램 설계 및 구현)

  • Kim, Yoon-Hyung;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2006
  • The real world is spatially modelled conceptually either as discrete objects or earth surface. The generated data models are then usually represented as vector and raster respectively. Although there are limited cases where only one data model is sufficient to solve the spatial problem at hand, it is now generally accepted that GIS should be able to handle various types of data model. Recent advances in spatial technology introduced even more variety of heterogeneous data models and the need is ever growing to handle and manage efficiently these large variety of spatial data. The OGC (Open GIS Consortium), an international organization pursuing standardization in the geospatial industry. recently introduced the GMLJP2 (Geographic Mark-Up Language JP2) format which enables store and handle heterogeneous spatial data. The GMLJP2 format, which is based on the JP2 format which is an abbreviation for JPEG2000 wavelet image compression format, takes advantage of the versatility of the GML capabilities to add extra data on top of the compressed image. This study takes a close look into the GMLJP2 format to analyse and exploit its potential to handle and mange hetergeneous spatial data. Aerial image, digital map and LIDAR data were successfully transformed end archived into a single GMLJP2 file. A simple viewing program was made to view the heterogeneous spatial data from this single file.

Fractal Analysis of Urban Morphology Considering Distributed Situation of Buildings (건물분포를 고려한 도시형태의 프랙털(Fractal) 해석)

  • Moon, Tae-Heon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.3
    • /
    • pp.1-10
    • /
    • 2005
  • The purpose of this paper is to conduct an experimental measurement and analysis of cities' morphology. Fractal theory that is an effective tool for evaluating self-similarity and complexity of objects was applied. For the comparative analysis of fractailities and computational verification, two totally different cities in Japan were selected. They are Kitakyushu City, which is a big and fully developed city, and Jinguu Machi of which almost all the area is covered with agricultural land use. After converting vector data to raster data within GIS, fractal dimensions of two cases in Kitakyushu City and one case in Jinguu Machi were calculated. The calculation showed that two parts of Kitakyushu City were already fractal. Jinguu Machi, however, was difficult to find fractality. As a conclusion, fractal was proved to be an useful tool to estimate the shape of cities reflecting their internal spatial structure, that is self-similarity and complexity.

  • PDF

Agroclimatic Maps Augmented by a GIS Technology (디지털 농업기후도 해설)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.1
    • /
    • pp.63-73
    • /
    • 2010
  • A comprehensive mapping project for agroclimatic zoning in South Korea will end by April 2010, which has required 4 years, a billion won (ca. 0.9 million US dollars) and 22 experts from 7 institutions to complete it. The map database from this project may be categorized into primary, secondary and analytical products. The primary products are called "high definition" digital climate maps (HD-DCMs) and available through the state of the art techniques in geospatial climatology. For example, daily minimum temperature surfaces were prepared by combining the climatic normals (1971-2000 and 1981-2008) of synoptic observations with the simulated thermodynamic nature of cold air by using the raster GIS and microwave temperature profiling which can quantify effects of cold air drainage on local temperature. The spatial resolution of the gridded climate data is 30m for temperature and solar irradiance, and 270m for precipitation. The secondary products are climatic indices produced by statistical analysis of the primary products and includes extremes, sums, and probabilities of climatic events relevant to farming activities at a given grid cell. The analytical products were prepared by driving agronomic models with the HD-DCMs and dates of full bloom, the risk of freezing damage, and the fruit quality are among the examples. Because the spatial resolution of local climate information for agronomic practices exceeds the current weather service scale, HD-DCMs and the value-added products are expected to supplement the insufficient spatial resolution of official climatology. In this lecture, state of the art techniques embedded in the products, how to combine the techniques with the existing geospatial information, and agroclimatic zoning for major crops and fruits in South Korea will be provided.

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF

Unveiling the mysteries of flood risk: A machine learning approach to understanding flood-influencing factors for accurate mapping

  • Roya Narimani;Shabbir Ahmed Osmani;Seunghyun Hwang;Changhyun Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.164-164
    • /
    • 2023
  • This study investigates the importance of flood-influencing factors on the accuracy of flood risk mapping using the integration of remote sensing-based and machine learning techniques. Here, the Extreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms integrated with GIS-based techniques were considered to develop and generate flood risk maps. For the study area of NAPA County in the United States, rainfall data from the 12 stations, Sentinel-1 SAR, and Sentinel-2 optical images were applied to extract 13 flood-influencing factors including altitude, aspect, slope, topographic wetness index, normalized difference vegetation index, stream power index, sediment transport index, land use/land cover, terrain roughness index, distance from the river, soil, rainfall, and geology. These 13 raster maps were used as input data for the XGBoost and RF algorithms for modeling flood-prone areas using ArcGIS, Python, and R. As results, it indicates that XGBoost showed better performance than RF in modeling flood-prone areas with an ROC of 97.45%, Kappa of 93.65%, and accuracy score of 96.83% compared to RF's 82.21%, 70.54%, and 88%, respectively. In conclusion, XGBoost is more efficient than RF for flood risk mapping and can be potentially utilized for flood mitigation strategies. It should be noted that all flood influencing factors had a positive effect, but altitude, slope, and rainfall were the most influential features in modeling flood risk maps using XGBoost.

  • PDF

A Probability Modeling of the Crime Occurrence and Risk Probability Map Generation based on the Urban Spatial Information (도시공간정보 기반의 범죄발생 확률 모형 및 위험도 확률지도 생성)

  • Kim, Dong-Hyun;Park, Koo-Rack
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.10
    • /
    • pp.207-215
    • /
    • 2009
  • Recently, the research of the analysis of the crime spatial is increased by using the computer information technology and GIS (Geometric Information System) in order to prevent the urban crime so as to increase the urbanization rate. In this paper, a probability map formed by the raster is organized by the quantification of crime risk per the cell using the region property of the urban spatial information in the static environment. Also, a map of the risk probability is constructed based on the relative risk by the region property, the relative risk by the facility, the relative risk by the woody plant and the river, and so on. And, this integrated risk probability map is calculated by averaging the individual cell risk applied to the climatic influence and the seasonal factor. And, a probability map of the overall risk is generated by the interpretation key of the crime occurrence relative risk index, and so, this information is applied to the probability map quantifying the occurrence crime pattern. And so, in this paper, a methodology of the modeling and the simulation that this crime risk probability map is modified according to the passage of time are proposed.

Analysis of paper map images for acquiring 3D terrain data (3차원 지형 자료 획득을 위한 지도 영상 분석)

  • LEE, JIN SEON
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.1
    • /
    • pp.68-76
    • /
    • 1996
  • One of the major problems in GIS(Geographical Information Systems) involves acquiring 3-D terrain data. Because conventional methods such as land surveying or analysis of aerial photographs are costly, the method of using existing paper maps has been gaining considerable attention. This method demands three processing steps: 1) extraction of contours, 2) assignment of height values to the extracted contours, 3) reconstruction of 3-D terrain data. In this paper we systematically develop a procedure for acquiring 3-D terrain data from contour solutions. For the first two steps, we describe the necessary operations and roughly sketch solutions. For the last step, we propose an efficient raster-based algorithm and present the results of experiments with existing paper map images.

  • PDF

Developing Program for Processing a Mass DEM Data using Streaming Method (스트리밍 방식을 이용한 대용량 DEM 프로세싱 프로그램의 개발)

  • Lee, Dong-Ha;Lee, Yong-Gyun;Suh, Yong-Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.61-66
    • /
    • 2009
  • This Paper describes a new program called DEM Generator need to process DEM from LiDAR data or digital map data. It is difficult to generate raster DEM from LiDAR mass point data sets and digital maps too large to fit into memory. The DEM Generator was designed to process DEM and shaded relief image of GeoTiff format in order of streaming meshes; I/O minimize tag, delaunay triangle, natural neighborhood or TIN, temporary files and grid. It is expected that we can be improved the precision of DEM and solved the time consuming problem of DEM generating of a wider area.

  • PDF

Generation of the Orthoimage with the Correction of Building Occlusion

  • Yoo, Hwan-Hee;Sohn, Duk-Jae;Park, Hong-Gi
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Geospatial Information Systems (GIS) have been employed to systematically manage and design land use in urban areas. This has increased the need for more accurate vector and raster data. In Korea, l/l,000-scale digital maps are used as vector data for the facility management in urban areas. This has increased the need for large scale orthoimages. Orthoimages generated from aerial imagery can provide accurate information, making possible the more effective city management. However, there is a large problem in using the orthoimages, i.e., currently available conventional orthoimages have not been generated based on Digital Elevation Model (DEM) that takes into account the building heights. So this causes the displacements of building image in large scale orthoimages. The present study is an attempt to generate the large scale orthoimages based on building DEM. The semiautomatic building extraction method can detect building outlines by mouse clicking on either building roofs or corners. Building DEM, based on the outline and calculated building height, was used to produce the large scale orthoimages with the corrected building occlusion.

  • PDF