• 제목/요약/키워드: Ras protein

검색결과 172건 처리시간 0.026초

돌단풍(Aceriphyllum rossii)에서 분리한 플라보노이드의 항암활성 (Anti-cancer Activity of Flavonoids from Aceriphyllum rossii)

  • 안은미;한재택;권병목;김성훈;백남인
    • Applied Biological Chemistry
    • /
    • 제51권4호
    • /
    • pp.309-315
    • /
    • 2008
  • 돌단풍 지상부를 80% MeOH로 추출하고, 얻어진 추출물을 EtOAc, n-BuOH 및 $H_2O$로 용매 분획하였다. 이 중 EtOAc 및 n-BuOH 분획으로부터 silica gel chromatography를 반복하여 5개의 화합물을 분리하였다. 각 화합물의 화학구조는 NMR, MS 및 IR 등의 스펙트럼 데이터를 해석하여, astragalin (1), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl (1${\rightarrow}$6)-${\beta}$-D-glucopyranoside (2), rutin(3), kaempferol 3-O-${\alpha}$-L-rhamnopyranosyl(1${\rightarrow}$4)-${\alpha}$-Lrhamnopyranosyl(1${\rightarrow}$6)-${\beta}$-D-glucopyranoside(4), quercetin 3-O-${\alpha}$-L-rhamnopyranosyl(1${\rightarrow}$4)-${\alpha}$-L-rhamnopyranosyl(1${\rightarrow}$6)-${\beta}$-Dglucopyranoside(5)로 동정하였다. 이들 화합물은 FPTase 활성을 억제하였으며, 특히 화합물 3(rutin)은 rat H-ras 세포주의 생장과 bFGF로 유도시킨 HUVECs의 cell migration을 억제하는 것으로 나타났다.

Protein Kinase C Inhibitor (PKCI)에 의한 방사선 민감도 변화와 c-fos Proto-oncogene의 전사 조절 (Effect of Protein Kinase C Inhibitor (PKCI) on Radiation Sensitivity and c-fos Transcription Activity)

  • 최은경;장혜숙;이연희;박건구
    • Radiation Oncology Journal
    • /
    • 제17권4호
    • /
    • pp.299-306
    • /
    • 1999
  • 목 적 : Ataxia-Telangiectasia (AT) 증은 여러 가지 유전적 결함을 갖는 질병으로 방사선 민감도가 비정상적으로 상승되어 있는 것이 특징이다 AT 환자에서 공통적으로 존재하는 ATM 유전자는 현재까지 방사선 신호전달에 관여하는 것으로 알려진 Pl-3 kinase와 유사한 구조임이 알려져 ATM이 방사선 신호전달경로에 중요한 작용을 할 것으로 추정하게 되었다. 본 연구에서는 AT 세포와 정상세포에 PKCI를 과발현 시킴으로써 방사선 신호전달에 관여하는 PKC를 억제하여 이것이 방사선 민감도에 미치는 영향을 관찰하고, 방사선에 의해 유도되는 early response gene인 c-fos transcription의 차이를 측정하여 ATM과 PKCI에 의한 신호전달이 c-fos 유전자 전사에 미치는 영향을 분석하고자 하였다. 대상 및 방법 : PKCI expression vector를 작제한 후 정상세포인 LM217과 AT세포인 AT5BIVA에 transfection 시킨 후 plasmid의 genomic DNA에 결합된 것은 polymerase chain reaction (PCR) 방법으로 확인하였고 PKCI의 mRNA 발현 여부는 northern blotting으로 확인하였다. 방사선 민감도는 아포토시스로 측정하였으며 PKCI가 과발현된 각 세포주에 5 Gy의 방사선을 조사한 후 48시간에 세포를 모아 TUNEL방법으로 아포토시스 세포의 수를 측정하였다. c-fos 유전자의 전사는 reporter 유전자로 c-fos CAT plsmid를 $\beta$-gal expression vector와 같이 각 세포주에 transfection 시키고 36시간이 지난 후 CAT assay를 하여 activity를 측정하고 동시에 $\beta$-gal assay를 시행하여 transfection 효율을 보정해 주었다. PKCI, Ras의 영향을 보기 위하여는 PKCI, Ras expression vector와 c-fos CAT plasmid를 cotransfection하고 CAT activity로 측정 하였다. 결 과 : 이 실험의 결과 LM과 AT 세포에서 PKCI가 방사선 민감도에 미치는 영향과 c-fos 전사에 미치는 영향을 처음으로 보여주었다. PKCI의 과발현이 LM 세포에서는 방사선 민감도를 증가시켰지만 AT세포에서는 오히려 약간 감소시키는 작용을 나타내었다. c-fos 전사는 AT 세포에서 LM 세포에 비하여 70배 낮게 나타났는데 PKCI가 과발현 됨으로써 LM 에서는 c-fos의 전사가 감소되었지만 AT 세포에서는 영향이 없었다. Ras 단백으로 c-fos를 유도시키고 여기에 PKCI 발현 백터를 contransfection 하면 LM세포에서는 induction 이 감소되었지만 AT 세포에서는 영향이 없었다. 즉 LM과 AT 세포에서의 PKCI에 의한 반응의 차이는 Ras와 관련된 signal transduction pathway라는 것을 알 수 있었다. 결 론 : PKCI는 정상세포에서는 방사선에 의한 세포 손상을 증가시키지만 AT 세포에서는 별 영향을 보이지 않는 것을 알 수 있었으며, 두 세포간의 이러한 차이는 c-fos proto-oncogene의 전사차이로 설명할 수 있겠다. 이러한 차이가 AT 세포의 방사선 민감도의 한 원인일 것으로 생각된다.

  • PDF

사람의 정상 피부세포 및 폐세포의 발암에 미치는 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin의 영향 (Tumorigenic Effects of 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin in Normal Human Skin and Lung Fibroblasts)

  • 강미경;염태경;김강련;김옥희;강호일
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권3호
    • /
    • pp.77-85
    • /
    • 2006
  • 2,3,7,8-Tetrachlorodibenzo-$\rho$-dioxin(TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although TCDD is recognized as potent carcinogens, relatively little is known about their role in the tumor promotion and carcinogenesis. It is known that TCDD can increase of cancer risk from various types of tissue by a mechanism possibly involving the aryl hydrocarbon receptor (AhR) activation. In this study, effects of TCDD on cellular proliferation of normal human skin and lung fibroblasts, Detroit551 and WI38 cells were investigated. In addition, to enhance our understanding of TCDD-mediated carcinogenesis, we have investigated process in which expression of Erk1/2, cyclinD1, oncogene such as Ha-ras and c-myc, and their cognate signaling pathway. TCDD that are potent activators of AhR-mediated activity was found to induce significant increase of cytochrome P4501A1 mRNA expression, suggesting a presence of functional AhR. These results support that CYP1A1 enzyme may be involved in the generation of TCDD-induced toxicity. Moreover mitogen-activated protein kinases (MARKs) phosphorylation and cyclin D1 overexpression are induced by TCDD, which corresponded with the progression of cellular proliferation. However, TCDD did not affected Ha-ras and c-myc mRNA expression. Taken together, it seems that TCDD are could be a part of cellular proliferation in non-tumorigenic normal human cells such as Detroit551 and WI38 cells through the upregulation of MAPKs signaling pathway regulating growth of cell population. Therefore, AhR-activating TCDD could potentially contribute to tumor promotion and Detroit551 and WI38 cells have been used as a detection system of tumorigenic effects of TCDD.

  • PDF

Effects of PLCE1 Gene Silencing by RNA Interference on Cell Cycling and Apoptosis in Esophageal Carcinoma Cells

  • Zhao, Li;Wei, Zi-Bai;Yang, Chang-Qing;Chen, Jing-Jing;Li, Dan;Ji, Ai-Fang;Ma, Liang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5437-5442
    • /
    • 2014
  • Esophageal squamous cell carcinoma (ESCC) is one of the most malignancies with a poor prognosis. The phospholipase $C{\varepsilon}$ gene (PLCE1) encodes a novel ras-related protein effector mediating the effects of R-Ras on the actin cytoskeleton and membrane protrusion. However, molecular mechanisms pertinent to ESCC are unclear. We therefore designed PLCE1-special small interfering RNA and transfected to esophageal squamous cell (EC) 9706 cells to investigat the effects of PLCE1 gene silencing on the cell cycle and apoptosis of ESCC and indicate its important role in the development of ESCC. Esophageal cancer tissue specimens and normal esophageal mucosa were obtained and assayed by immunohistochemical staining to confirm overexpression of PLCE1 in neoplasias. Fluorescence microscopy was used to examine transfection efficiency, while the result of PLCE1 silencing was examined by reverse transcription (RT-PCR). Flow cytometry and annexin V apoptosis assays were used to assess the cell cycle and apoptosis, respectively. Expression of cyclin D1 and caspase-3 was detected by Western-blotting. The level of PLCE1 protein in esophageal cancer tissue was significantly higher than that in normal tissue. After transfection, the expression of PLCE1 mRNA in EC 9706 was significantly reduced, compared with the control group. Furthermore, flow cytometry results suggested that the PLCE1 gene silencing arrested the cell cycle in the G0/G1 phase; apoptosis was significantly higher than in the negative control group and mock group. PLCE1 gene silencing by RNAi resulted in decreased expression of cyclin D1 and increased expression of caspase-3. Our study suggests that PLCE1 may be an oncogene and play an important role in esophageal carcinogenesis through regulating proteins which control cell cycling and apoptosis.

Expression of Sara2 Human Gene in Erythroid Progenitors

  • Jardim, Denis Leonardo Fontes;Cunha, Anderson Ferreira Da;Duarte, Adriana Da Silva Santos;Santos, Camila Oresco Dos;Saad, Sara Terezinha Olalla;Costa, Fernando Ferreira
    • BMB Reports
    • /
    • 제38권3호
    • /
    • pp.328-333
    • /
    • 2005
  • A human homologue of Sar1, named Sara2, was shown to be preferentially expressed during erythropoiesis in a culture stimulated by EPO. Previous studies, in yeast, have shown that secretion-associated and Ras-related protein (Sar1p) plays an essential role in protein transport from the endoplasmic reticulum to the Golgi apparatus. Here, we report the molecular analysis of Sara2 in erythroid cell culture. A 1250 bp long cDNA, encoding a 198 amino-acid protein very similar to Sar1 proteins from other organisms, was obtained. Furthermore, we also report a functional study of Sara2 with Real-time quantitative PCR analysis, demonstrating that expression of Sara2 mRNA increases during the initial stages of erythroid differentiation with EPO and that a two-fold increase in expression occurs following the addition of hydroxyurea (HU). In K562 cells, Sara2 mRNA was observed to have a constant expression and the addition of HU also up-regulated the expression in these cells. Our results suggest that Sara2 is an important gene in processes involving proliferation and differentiation and could be valuable for understanding the vesicular transport system during erythropoiesis.

In vivo protein expression changes in mouse livers treated with dialyzed coffee extract as determined by IP-HPLC

  • Yoon, Cheol Soo;Kim, Min Keun;Kim, Yeon Sook;Lee, Suk Keun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.44.1-44.17
    • /
    • 2018
  • Background: Coffee extract has been investigated by many authors, and many minor components of coffee are known, such as polyphenols, diterpenes (kahweol and cafestol), melanoidins, and trigonelline, to have anti-inflammatory, anti-oxidant, anti-angiogenic, anticancer, chemoprotective, and hepatoprotective effects. Therefore, it is necessary to know its pharmacological effect on hepatocytes which show the most active cellular regeneration in body. Methods: In order to determine whether coffee extract has a beneficial effect on the liver, 20 C57BL/6J mice were intraperitoneally injected once with dialyzed coffee extract (DCE)-2.5 (equivalent to 2.5 cups of coffee a day in man), DCE-5, or DCE-10, or normal saline (control), and then followed by histological observation and IP-HPLC (immunoprecipitation high performance liquid chromatography) over 24 h. Results: Mice treated with DCE-2.5 or DCE-5 showed markedly hypertrophic hepatocytes with eosinophilic cytoplasms, while those treated with DCE-10 showed slightly hypertrophic hepatocytes, which were well aligned in hepatic cords with increased sinusoidal spaces. DCE induced the upregulations of cellular proliferation, growth factor/RAS signaling, cellular protection, p53-mediated apoptosis, angiogenesis, and antioxidant and protection-related proteins, and the downregulations of NFkB signaling proteins, inflammatory proteins, and oncogenic proteins in mouse livers. These protein expression changes induced by DCE were usually limited to the range ± 10%, suggesting murine hepatocytes were safely reactive to DCE within the threshold of physiological homeostasis. DCE-2.5 and DCE-5 induced relatively mild dose-dependent changes in protein expressions for cellular regeneration and de novo angiogenesis as compared with non-treated controls, whereas DCE-10 induced fluctuations in protein expressions. Conclusion: These observations suggested that DCE-2.5 and DCE-5 were safer and more beneficial to murine hepatocytes than DCE-10. It was also found that murine hepatocytes treated with DCE showed mild p53-mediated apoptosis, followed by cellular proliferation and growth devoid of fibrosis signaling (as determined by IP-HPLC), and subsequently progressed to rapid cellular regeneration and wound healing in the absence of any inflammatory reaction based on histologic observations.

Bacillus anthracis Spores Influence ATP Synthase Activity in Murine Macrophages

  • Seo, Gwi-Moon;Jung, Kyoung-Hwa;Kim, Seong-Joo;Kim, Ji-Cheon;Yoon, Jang-Won;Oh, Kwang-Keun;Lee, Jung-Ho;Chai, Young-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권4호
    • /
    • pp.778-783
    • /
    • 2008
  • Anthrax is an infectious disease caused by toxigenic strains of the Gram-positive bacterium Bacillus anthracis. To identify the mitochondrial proteins that are expressed differently in murine macrophages infected with spores of B. anthracis Sterne, proteomic and MALDI-TOF/MS analyses of uninfected and infected macrophages were conducted. As a result, 13 mitochondrial proteins with different expression patterns were discovered in the infected murine macrophages, and some were identified as ATP5b, NIAP-5, ras-related GTP binding protein B isoform CRAa, along with several unnamed proteins. Among these proteins, ATP5b is related to energy production and cytoskeletal rearrangement, whereas NIAP-5 causes apoptosis of host cells due to binding with caspase-9. Therefore, this paper focused on ATP5b, which was found to be down regulated following infection. The downregulated ATP5b also reduced ATP production in the murine macrophages infected with B. anthracis spores. Consequently, this study represents the first mitochondrial proteome analysis of infected macrophages.

RASA1-Related Parkes Weber Syndrome in a Neonate

  • Koh, Hong Ryul;Lee, Yeon Kyung;Ko, Sun Young;Shin, Son Moon;Han, Byoung-Hee
    • Neonatal Medicine
    • /
    • 제25권3호
    • /
    • pp.126-130
    • /
    • 2018
  • Parkes Weber syndrome is a rare congenital vascular anomaly, related to the RAS p21 protein activator 1 (RASA1) gene. It is characterized by capillary cutaneous malformations, bony and soft tissue hyperplasia, and multiple arteriovenous fistulas throughout the affected upper or lower extremity. These arteriovenous fistulas can be associated with life-threatening complications such as bleeding, thrombosis, and high output heart failure. In this report, we present a neonate who had a disproportionately hypertrophied left upper limb with port-wine stain, dystrophy of the left humerus, and hypertrophy of the left clavicle on X-ray, and arteriovenous malformation and massive dilatation of the left subclavian artery on magnetic resonance angiography. Exome sequencing analysis revealed a novel heterozygous splicing mutation (c.1776+2T>A) in the RASA1 gene. To the best of our knowledge, this report is the first case of RASA1-related Parkes Weber syndrome in Korea.

Sequence Homologies of GTP-binding Domains of Rab and Rho between Plants and Yeast/Animals Suggest Structural and Functional Similarities

  • Lee, Ji-Yeon;Lee, Dong-Hee
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.85-92
    • /
    • 1996
  • Small GTP-binding proteins are divided into three major group: Ras, Rho and Ypt/Rab. They have the conserved regions designed G1 to G5 that are critical in GDP/GTP exchange, GTP-induced conformational change and GTP hydrolysis. We isolated and characterized genomic DNA or cDNAfragments encoding G1 to G3 domains of small GTP-binding protein Rab and Rho from several plant species using two different PCR-based cloning strategies. Seven rab DNA fragments were isolated from 4 different plants, mung-bean, tobacco, rice and pepper using two degenerate primers corresponding to the GTP-binding domain G1 and G3 in small GTP-binding proteins. The amino acid sequences among these rab DNA fragments and other known small GTP-binding proteins shows that they belong to the Ypt/Rab family. Six rho DNA fragments were isolated from 5 different plants, mung-bean, rice, Arabidopsis, Allium and Gonyaulax using the nested PCR method that involves four degenerate primers corresponding to the GTP-binding domain G1, G3 and G4. The rho DNA fragments cloned show more than 90% homology to each other. Sequence comparison between plant and other known Rho family genes suggests that they are closely related (67 to 82% amino acid identity). Sequence analysis and southern blot analysis of rab and rho in mung-bean suggest than thses genes are encoded by multigene family in mung-bean.

  • PDF

배초향으로부터 Grb2-Shc domain 결합저해 물질의 분리 (Isolation of Grb2-Shc Domain Binding Inhibition Component from Agastache rugosa)

  • 이은숙;안병태;이새봄;김혜경;복성해;정태숙
    • 생약학회지
    • /
    • 제30권4호
    • /
    • pp.404-408
    • /
    • 1999
  • SH2 domains and their associated catalytic or noncatalytic proteins constitute critical signal transduction targets for drug discovery. Grb2 associates with phosphotyrosine sites of the activated receptors or Shc via their SH2 domain to link receptor tyrosine kinases to ras signalling. Blocking of the Grb2-Shc complex may be to intervene the oncogenic signal transduction pathways and to develop a new antitumor drug. In the search for blockers of Grb2 SH2-Shc interaction, Lutein, a family of carotenoids, was isolated from the extract of the leaf of Agastache rugosa O. Kuntze as SH2 domain antagonists. The $IC_{50}$ of Lutein against Grb2-Shc binding was $6.8\;{\mu}M$.

  • PDF