• Title/Summary/Keyword: Rapid manufacturing

Search Result 826, Processing Time 0.03 seconds

An Evaluation Method for the Musculoskeletal Hazards in Wood Manufacturing Workers Using MediaPipe (MediaPipe를 이용한 목재 제조업 작업자의 근골격계 유해요인 평가 방법)

  • Jung, Sungoh;Kook, Joongjin
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.

Development of a Tool for Automation of Analysis of a Spindle System of Machine Tools (공작기계 주축 시스템의 해석 자동화를 위한 툴 개발)

  • Choi, Jin-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.2
    • /
    • pp.121-126
    • /
    • 2015
  • In this research, a tool was developed for the rapid performance of three-dimensional finite element analysis (3D FEA) of a machine tool spindle system made of a shaft and bearings. It runs the FEA with data, such as the bearing stiffness and the coordinates of the points, to define the section of the shaft, bearing positions, and cutting point. developed for the spindle system and then implemented with the tool using an object-oriented programing technique that allows the use of the objects of the CAD system used in this research. Graphic user interfaces were designed for a user to interact with the tool. It provides rapid evaluation of the design of a spindle system, and therefore, it would be helpful to identify a near optimal design of a spindle system based on, say, static stiffness with design changes and, consequently, FEA.

Vibration Analysis of Loudspeaker by Using Electronic Speckle Pattern interferometry (전자 스페클 간섭계에 의한 스피커 진동 해석)

  • 강영준
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.92-99
    • /
    • 1997
  • Nowadays, Electronic Speckle Pattern Interferometry is a well-established measuring technique with a wide range of industrial applications, particularly in the fields of deformation measurement and vibration analysis. Comparing with holographic interferometry, it has some attractive features, which are rapid recording and reconstruction, satisfiable automation etc. The Time-Average ESPI is used to provide vibration mode shape of an object whose vibration amplitude is given as a fringe pattern. Its merit is rapid and simple measurement for vibrating object. However, it is not possible to determine the direction of motions of a point on the object at any given time, because it does not give any information about the phase of vibration. But, Stroboscopic ESPI can measure the amplitude and phase of vibrating surface. In this paper, loudspeakers were tested by these two methods. As a result, we can assume that these techniques will be applied directly in the loudspeaker industry.

  • PDF

Rapid Manufacturing of Microscale Thin-walled Structures by Phase Change Workholding Method (상변화 고정방식에 의한 마이크로 박벽 구조물의 쾌속제작)

  • Shin, Bo-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.188-193
    • /
    • 2005
  • To provide the various machining materials with excellent quality and dimensional accuracy, high -speed machining is very useful tool as one of the most effective rapid manufacturing processes. However, high-speed machining is not suitable for microscale thin-walled structures because of the lack of the structure stiffness to resist the cutting force. A new method which is able to make a very thin-walled structure rapidly will be proposed in this paper. This method is composed two processes, high-speed machining and filling process. Strong workholding force comes out of the solidification of filling materials. Low-melting point metal alloys are used in order to minimize the thermal effect during phase change and to hold arbitrary shape thin-walled structures quickly during high-speed machining. To verify the usefulness of this method, we will show some applications, for examples thin -wall cylinders and hemispherical shells, and compare the experimental results to analyze the dimensional accuracy of typical parts of the structures.

A Study on the Strength Evaluation of Thin Wall Molding (박육성형제품의 강도평가에 관한연구)

  • Kim, Ok-Rae;Woo, Chang-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.490-494
    • /
    • 2011
  • In this paper, using by rapid heating and cooling systems for injection molding and temperatures to changes. In the process of molding temperature and pressure inside the mold was found. In addition, the tensile strength of test specimens were molded, mechanical properties of injection molded parts were identified on mold temperature. Copper could withstand more tensile force than NAK. Therefore, it can be concluded that materials with high heat conductivity must be used in thin walled products.

Development of a New NC-Controlled Trial Manufacturing Process for Sheet Metal Forming (박판 형성을 위한 새로운 추치 제어식 시작 방법의 개발)

  • 조철훈;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.929-932
    • /
    • 1995
  • In the work, a new computerized incremental forming method having high flexibility has been developed. In the mothod, the ordinary tools are replaced by various small tools, and only the small local region of a sheet blank is incrementally by movement of these tools. Since a small tool moves over the arbitrary surface ofthe dies using a NC machine, it is possible to produce three-dimensional and non-symmetric parts directly from CAD data. Arbitrarily shaped dies are made by LOM(Laminated Object Manufacturing), which is one of the Rapid Prototyping Methods. A forming machine is designed and developed by introducing a computer to control the movement of the tools.

  • PDF

A Description Method of Linear Hotwire Posture in Space for the Cutting System of VLM-S (가변적층 쾌속조형공정용 CAD 시스템 개발을 위한 3차원 공간상에서의 선형열선절단기 자세표현에 관한 연구)

  • 이상호;문영복;안동규;양동열;채희창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.11-14
    • /
    • 2001
  • In all Rapid Prototyping(RP) processes, computer-aided design(CAD) solid model is sliced into thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successively deposited and, at the same time, bonded onto the previous layer, the stacked layers form a physical part of the model. The objective of this study is to develop a method for obtaining necessary coordinates$(x,\;y,\;\theta_x,\;\theta_y)$ to position linear hotwire of the cutting system in three-dimensional space for the Variable Lamination Manufacturing process (VLM-S), which utilizes expandable polystyrene foam sheet as part material. In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes, such as a spanner, a patterned columm, and a pyramid were made using data obtained from the method.

  • PDF

A Study on Correction of CIRCLE Product Error by Prototype using Rapid Prototyping System (RP시스템을 이용한 원형시제품 제작 시 제품 오차 보정에 관한 연구)

  • Kim, Won-Jung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.146-153
    • /
    • 2012
  • RP system which is widely used to reduce the time of product development is to resolve the problem of cutting work. It is a method using laminated thin films to produce many forms. The RP equipment used for this experiment is FDM system. This can produce 3D model with using 3D CAD designed file within a relatively short time. Not only this, this system also through 3D file preparation, 3D product manufacture, removal support these 3 step operating process can easily produce goods, but product can be different from original design. This research has been conducted to minimize this error. To apply to the circular product made a circular specimen and measured several times with 3D scanner and find out average 99.622% of accuracy. This result is applied to RP system, and with this changed design produced a specimen, and found out the accuracy is increased to 99.958%. If this is applied to circular products, we can produce more precise products with less process.

Study on optimum conditions establishment by Mold fabrication of Vacuum Casting (진공주형몰드 제작에 대한 최적조건 설정에 관한 연구)

  • Jeon, Eon-Chan;Han, Min-Sik;Kim, Soo-Yong;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.65-70
    • /
    • 2007
  • In this study, we analyzed about that after design form manufacture master pattern in Rapid Prototyping-RP through design program, processes to manufacture prototype using Vacuum Casting. In Rapid Prototyping-RP, there is an en-or by shrinkage of resin and, in Vacuum Casting, there is an error by shrinkage of silicon. To select condition which shrinkage become the minimum of each process, manufactured prototype after using Full Factorial Design of Design of Experiments, We could confirm shrinkage using reverse engineering and that result came into effect ANOVA 2-way. We applied errors of each process to master pattern, and then presented the method to improve flood control precision of prototype of Vacuum Casting.

  • PDF

Calculation of rotational angle of the Linear Hotwire Cutting System for VLM-S (VLM-S용 선형열서절단기의 회전각 계산과 적용예)

  • 이상호;안동규;최홍석;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.883-886
    • /
    • 1997
  • In all Rapid Prototyping (RP) processes, a CAD solid model is sliced ito thin layers of uniform, but not necessarily constant, thickness in the building direction. Each cross-sectional layer is successively deposited and, at the same tim, bonded onto the previous layer; the stacked layers form a physical part of the model. The objective of this study is to develop a methode for calculating the rotational angle(θ/sub x/, θ/sub y/) of the linear hotwire cutting system in the three-dimensional space for the Variable Lamination Manufacturing process using expandable polystyrene foam sheet (VLM-S). In order to examine the applicability of the developed method to VLM-S, various three-dimensional shapes, such s a screw, an extruded cross, and a figure of Sonokong, were made using the data obtaiend from the method.

  • PDF