International Journal of Computer Science & Network Security
/
v.22
no.5
/
pp.342-347
/
2022
On Cloud, the important data of the user that is protected on remote servers can be accessed via internet. Due to rapid shift in technology nowadays, there is a swift increase in the confidential and pivotal data. This comes up with the requirement of data security of the user's data. Data is of different type and each need discrete degree of conservation. The idea of data security data science permits building the computing procedure more applicable and bright as compared to conventional ones in the estate of data security. Our focus with this paper is to enhance the safety of data on the cloud and also to obliterate the problems associated with the data security. In our suggested plan, some basic solutions of security like cryptographic techniques and authentication are allotted in cloud computing world. This paper put your heads together about how machine learning techniques is used in data security in both offensive and defensive ventures, including analysis on cyber-attacks focused at machine learning techniques. The machine learning technique is based on the Supervised, UnSupervised, Semi-Supervised and Reinforcement Learning. Although numerous research has been done on this topic but in reference with the future scope a lot more investigation is required to be carried out in this field to determine how the data can be secured more firmly on cloud in respect with the Machine Learning Techniques and cryptographic methods.
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.353-357
/
2022
This article identifies the problems and substantiates the directions for the development of distance learning technologies in the training of personnel. An example of using digital media to create a remote access laboratory is given. The article is devoted to the definition of the main aspects of the organization of distance education. Rapid digitization, economic, political and social changes taking place in Ukraine necessitate the reform of the education system. First of all, it concerns meeting the educational needs of citizens throughout their lives, providing access to educational and professional training for all who have the necessary abilities and adequate training. The most effective solution to the above-mentioned problems is facilitated by distance learning. The article analyzes the essence and methods of distance learning organization, reveals the features of the use of electronic platforms for the organization of this form of education in different countries of the world. The positive characteristics of distance learning are identified, namely: extraterritoriality; savings on transport costs; the interest of modern youth in the use of information tools in everyday life; increase in the number of students; simplicity and accessibility of training; convenient consultation system; democratic relations between the student and the teacher; convenience for organizations in training their employees without interrupting their regular work; low level of payment for distance education compared to traditional education; individual learning pace; new teacher status. Among the negative features of online education, the author refers to the following problems: authentication of users during knowledge verification, calculation of the teacher's methodological load and copyright of educational materials; the high labor intensity of developing high-quality educational content and the high cost of distance learning equipment; the need to provide users with a personal computer and access to the Internet; the need to find and use effective motivation mechanisms for education seekers.
KIPS Transactions on Software and Data Engineering
/
v.11
no.11
/
pp.479-488
/
2022
In recent years, with the rapid development of machine learning technology, research utilizing machine learning has been actively conducted in fields such as cognition, reasoning and judgment, and action among various technologies constituting intelligent systems. In order to utilize this machine learning, it is indispensable to collect data for learning. However, the types of data generated vary according to the environment in which the data is generated, and the types and forms of data required are different depending on the learning model to be used for machine learning. Due to this, there is a problem that the existing data collection method cannot be reused in a new environment, and a specialized data collection module must be developed each time. In this paper, we propose a specification-based methology for data collection in artificial intelligence system to solve the above problems, ensure the reusability of the data collection method according to the data collection environment, and automate the implementation of the data collection function.
International conference on construction engineering and project management
/
2022.06a
/
pp.831-838
/
2022
Machine Learning is a process of using computer algorithms to extract information from raw data to solve complex problems in a data-rich environment. It has been used in the construction industry by both academics and practitioners for multiple applications to improve the construction process. The Construction Industry Institute, a leading construction research organization has twenty-five years of experience in benchmarking capital projects in the industry. The organization is at an advantage to develop useful machine learning applications because it possesses enormous real construction data. Its benchmarking programs have been actively used by owner and contractor companies today to assess their capital projects' performance. A credible benchmarking program requires statistically valid data without subjective interference in the program administration. In developing the next-generation benchmarking program, the Data Warehouse, the organization aims to use machine learning algorithms to minimize human effort and to enable rapid data ingestion from diverse sources with data validity and reliability. This research effort uses a focus group comprised of practitioners from the construction industry and data scientists from a variety of disciplines. The group collaborated to identify the machine learning requirements and potential applications in the program. Technical and domain experts worked to select appropriate algorithms to support the business objectives. This paper presents initial steps in a chain of what is expected to be numerous learning algorithms to support high-performance computing, a fully automated performance benchmarking system.
International Journal of Computer Science & Network Security
/
v.24
no.8
/
pp.179-183
/
2024
This article identifies the problems and substantiates the directions for the development of distance learning technologies in the training of personnel. An example of using digital media to create a remote access laboratory is given. The article is devoted to the definition of the main aspects of the organization of distance education. Rapid digitization, economic, political and social changes taking place in Ukraine necessitate the reform of the education system. First of all, it concerns meeting the educational needs of citizens throughout their lives, providing access to educational and professional training for all who have the necessary abilities and adequate training. The most effective solution to the above-mentioned problems is facilitated by distance learning. The article analyzes the essence and methods of distance learning organization, reveals the features of the use of electronic platforms for the organization of this form of education in different countries of the world. The positive characteristics of distance learning are identified, namely: extraterritoriality; savings on transport costs; the interest of modern youth in the use of information tools in everyday life; increase in the number of students; simplicity and accessibility of training; convenient consultation system; democratic relations between the student and the teacher; convenience for organizations in training their employees without interrupting their regular work; low level of payment for distance education compared to traditional education; individual learning pace; new teacher status. Among the negative features of online education, the author refers to the following problems: authentication of users during knowledge verification, calculation of the teacher's methodological load and copyright of educational materials; the high labor intensity of developing high-quality educational content and the high cost of distance learning equipment; the need to provide users with a personal computer and access to the Internet; the need to find and use effective motivation mechanisms for education seekers.
Journal of The Korean Association of Information Education
/
v.17
no.2
/
pp.115-123
/
2013
With the rapid growth of mobile technologies, the mobile learning has been gradually considered as a efficient and effective learning form because it breaks the limitations of learning time and space occurring in the traditional classroom learning. Therefore, this research aims how the learners' m-learning efficacy, ubiquity, perceived usefulness, and ease of use predict perceived learning achievement and satisfaction Participants were 144 11th-grade students in A high school in Kyungnam area, Korea. After studying science class using mobile devices, they responded the following surveys: m-learning efficacy, ubiquity, perceived usefulness, ease of use, and satisfaction. Multiple regression analyses with correlation were applied to this study as a data analysis method. Findings of this study include: (a) m-learning efficacy and perceived usefulness predicted learning satisfaction, (b) perceived usefulness and ubiquity predicted perceived learning achievement. These findings imply that m-learning efficacy, perceived usefulness, ubiquity should be valued to enhance learning outcomes in mobile learning class.
Journal of Korea Society of Industrial Information Systems
/
v.20
no.2
/
pp.45-56
/
2015
In this paper we propose a very rapid moving object tracking method for an object-based auto focus on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use a sliding-window detection technique based on histogram features. By adapting the integral histogram, we solve the problem of the time-consuming histogram computation on each sub-window. For more speed up, we propose a local candidate search, and an adaptive scaling template method. In addition, we propose to apply a stabilization term in the matching function for a stable detection location. In experiments on our dataset, we demonstrated that we achieved a very rapid tracking performance demonstrating over 100 frames per second on a PC environment.
Pendharkar, Umesh;Patel, K.A.;Chaudhary, Sandeep;Nagpal, A.K.
Steel and Composite Structures
/
v.18
no.3
/
pp.547-563
/
2015
Deflection in a beam of a composite frame is a serviceability design criterion. This paper presents a methodology for rapid prediction of long-term mid-span deflections of beams in composite frames subjected to service load. Neural networks have been developed to predict the inelastic mid-span deflections in beams of frames (typically for 20 years, considering cracking, and time effects, i.e., creep and shrinkage in concrete) from the elastic moments and elastic mid-span deflections (neglecting cracking, and time effects). These models can be used for frames with any number of bays and stories. The training, validating, and testing data sets for the neural networks are generated using a hybrid analytical-numerical procedure of analysis. Multilayered feed-forward networks have been developed using sigmoid function as an activation function and the back propagation-learning algorithm for training. The proposed neural networks are validated for an example frame of different number of spans and stories and the errors are shown to be small. Sensitivity studies are carried out using the developed neural networks. These studies show the influence of variations of input parameters on the output parameter. The neural networks can be used in every day design as they enable rapid prediction of inelastic mid-span deflections with reasonable accuracy for practical purposes and require computational effort which is a fraction of that required for the available methods.
This paper proposes a method for evaluating the work of manufacturing workers using MediaPipe as a risk factor for musculoskeletal diseases. Recently, musculoskeletal disorders (MSDs) caused by repeated working attitudes in industrial sites have emerged as one of the biggest problems in the industrial health field while increasing public interest. The Korea Occupational Safety and Health Agency presents tools such as NIOSH Lifting Equations (NIOSH), OWAS (Ovako Working-posture Analysis System), Rapid Upper Limb Assessment (RULA), and Rapid Entertainment Assessment (REBA) as ways to quantitatively calculate the risk of musculoskeletal diseases that can occur due to workers' repeated working attitudes. To compensate for these shortcomings, the system proposed in this study obtains the position of the joint by estimating the posture of the worker using the posture estimation learning model of MediaPipe. The position of the joint is calculated using inverse kinetics to obtain an angle and substitute it into the REBA equation to calculate the load level of the working posture. The calculated result was compared to the expert's image-based REBA evaluation result, and if there was a result with a large error, feedback was conducted with the expert again.
In this paper, we proposed an efficient method for rapid diagnosis of COVID-19 by voice. A novel Strided Convolution Separable Transformer (SC-SepTr) is proposed by modifying the conventional Separable Transformer (SepTr) for audio signal recognition. The proposed method reduces the memory and computational requirements to enable rapid diagnosis of COVID-19. As a result of experiments on Coswara, it was shown that the proposed method perform rapid diagnosis with guaranteeing Area Under the Curve (AUC) performance even for a relatively small amount of learning data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.