• 제목/요약/키워드: Rapid Prototyping Technolgy

검색결과 2건 처리시간 0.022초

적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 - (Development of New Rapid Prototyping System Performing both Deposition and Machining (II))

  • 허정훈;이건우
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.

광조형물의 정밀도 향상을 위한 Laser주사경로 생성에 관한 연구 (A Study on Laser Scan Path Generation for Improving the Precision of Stereolithographic Parts)

  • Park, H.T.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제13권12호
    • /
    • pp.142-150
    • /
    • 1996
  • Nowadays, as the development paeiod of new products becomes even shorter, the importance of Rapid Prototyping Technology(RPT) has been rapidly increased. The major application of RPT is an early verification of product designs and quick production of prototypes for testing. Moreover, RPT is applied not only as a second tooling process such as mold making and investment casting but also as a creating some physical structure in medical field. Despite the remarkable progress of RPT, it is required to improve various problems resulting from application such as production time, accuracy and materials. This paper presents a laser scan path generation for accuracy of stereolithographicparts The methodology of laser scan path generation is discussed based on the stereolithography, The procedure of this research is as follows : 1) Input laser scanning conditions such as a laser beam diameter and a laser scanning interval, 2) Reconstruct original contours without self intersecting offset, 3) Calculate offset about reconstructed contours, 4) Calculate intersection points between horizontal or vertical lines and offset contours for internal hatch, 5) Decide laser shutter on/off points. The algorithm developed and programmed by C language is verified as an efficient method after testing a number of STL files of mechanical parts.

  • PDF