• Title/Summary/Keyword: Rapid Prototyping Technique

Search Result 87, Processing Time 0.02 seconds

3D Printed Titanium Implant for the Skull Reconstruction: A Preliminary Case Study

  • Choi, Jong-Woo;Ahn, Jae-Sung
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.2
    • /
    • pp.99-102
    • /
    • 2014
  • The skull defect can be made after the trauma, oncologic problems or neurosurgery. The skull reconstruction has been the challenging issue in craniofacial fields for a long time. So far the skull reconstruction with autogenous bone would be the standard. Although the autogenous bone would be the ideal one for skull reconstruction, donor site morbidity would be the inevitable problem in many cases. Meanwhile various types of allogenic and alloplastic materials have been also used. However, skull reconstruction with many alloplastic material have produced no less complications including infection, exposure, and delayed wound healing. Because the 3D printing technique evolved so fast that 3D printed titanium implant were possible recently. The aim of this trial is to try to restore the original skull anatomy as possible using the 3D printed titanium implant, based on the mirrored three dimensional CT images based on the computer simulation. Preoperative computed tomography (CT) data were processed for the patient and a rapid prototyping (RP) model was produced. At the same time, the uninjured side was mirrored and superimposed onto the traumatized side, to create a mirror-image of the RP model. And we fabricated Titanium implant to reconstruct three-dimensional orbital structure in advance, using the 3D printer. This prefabricated Titanium-implant was then inserted onto the defected skull and fixed. Three dimensional printing technique of titanium material based on the computer simulation turned out to be very successful in this patient. Individualized approach for each patient could be an ideal way to manage the traumatic patients in near future.

Evaluation the clinical acceptability of the marginal and internal gaps of fixed partial denture fabricated with additive manufacturing technology (적층 가공방식에 따른 고정성 치과보철물의 변연 및 내면 적합도 평가연구)

  • Kim, Jae-Hong;Kim, Ki-Baek
    • Journal of Technologic Dentistry
    • /
    • v.40 no.4
    • /
    • pp.209-215
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the clinical acceptability of the marginal and internal gap of Co-Cr metal copings fabricated with stereolithography (SLA). Methods: Titanium master dies were milled after scanning of the prepared tooth (n=30). For group I, Co-Cr metal copings were made from conventional lost-wax technique(LWT, n=10). For group II, the master dies were scanned and designed with CAD system. Then, metal copings were milled with Co-Cr(SUB, n=10). For group III(ADD, n=10), the scanning and design procedures were same as group II and burn-out resins were fabricated with SLA device. The marginal and internal discrepancies were measured under an optical microscope(100x) on ten reference points and were statistically analyzed with one-way ANOVA(${\alpha}=.05$). Results: The mean total discrepancies were $53.76{\pm}12.42{\mu}m$ in the LWT group and $69.82{\pm}15.48{\mu}m$ in the ADD group. The SUB group showed the largest total mean value $110.33{\pm}13.77{\mu}m$. There was statistically significant difference between the SUB and the other groups(P<0.05). Conclusion : Co-Cr metal copings fabricated with SLA technology showed clinically acceptable value on marginal and internal gap and there was no statistically significant difference between conventional lost-wax technique and SLA.

In vitro evaluation of the bond strength between various ceramics and cobalt-chromium alloy fabricated by selective laser sintering

  • Bae, Eun-Jeong;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.312-316
    • /
    • 2015
  • PURPOSE. This study aimed to present the clinical applicability of restorations fabricated by a new method, by comparing the bond strength of between ceramic powder with different coefficient of thermal expansion and alloys fabricated by Selective laser sintering (SLS). MATERIALS AND METHODS. Fifty Co-Cr alloy specimens ($25.0{\times}3.0{\times}0.5mm$) were prepared by SLS and fired with the ceramic ($8.0{\times}3.0{\times}0.5mm$) (ISO 9693:1999). For comparison, ceramics with different coefficient of thermal expansion were used. The bond strength was measured by three-point bending testing and surfaces were observed with FE-SEM. Results were analyzed with a one-way ANOVA (${\alpha}$=.05). RESULTS. The mean values of Duceram Kiss ($61.18{\pm}6.86MPa$), Vita VM13 ($60.30{\pm}7.14MPa$), Ceramco 3 ($58.87{\pm}5.33MPa$), Noritake EX-3 ($55.86{\pm}7.53MPa$), and Vintage MP ($55.15{\pm}7.53MPa$) were found. No significant difference was observed between the bond strengths of the various metal-ceramics. The surfaces of the specimens possessed minute gaps between the additive manufactured layers. CONCLUSION. All the five powders have bond strengths higher than the required 25 MPa minimum (ISO 9693); therefore, various powders can be applied to metal structures fabricated by SLS.

Optimization of Single Point Incremental Forming of Al5052-O Sheet (Al5052-O 판재의 최적 점진성형 연구)

  • Kim, Chan Il;Xiao, Xiao;Do, Van Cuong;Kim, Young Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.3
    • /
    • pp.181-186
    • /
    • 2017
  • Single point incremental forming (SPIF) is a sheet-forming technique. It is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. The Critical parameters in the forming process include tool diameter, step depth, feed rate, spindle speed, etc. In this study, these parameters and the die shape corresponding to the Varying Wall Angle Conical Frustum(VWACF) model were used for forming 0.8mm in thick Al5052-O sheets. The Taguchi method of Experiments of Design (DOE) and Grey relational optimization were used to determine the optimum parameters in SPIF. A response study was performed on formability, spring back, and thickness reduction. The research shows that the optimum combination of these parameters that yield best performance of SPIF is as follows: tool diameter, 6mm; spin speed, 60rpm; step depth, 0.3mm; and feed rate, 500mm/min.

Optimization of Process Parameters of Incremental Sheet Forming of Al3004 Sheet Using Genetic Algorithm-BP Neural Network (유전 알고리즘-BP신경망을 이용한 Al3004 판재 점진성형 공정변수에 대한 최적화 연구)

  • Yang, Sen;Kim, Young-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.560-567
    • /
    • 2020
  • Incremental Sheet Forming (ISF) is a unique sheet-forming technique. The process is a die-less sheet metal manufacturing process for rapid prototyping and small batch production. In the forming process, the critical parameters affecting the formability of sheet materials are the tool diameter, step depth, feed rate, spindle speed, etc. This study examined the effects of these parameters on the formability in the forming of the varying wall angle conical frustum model for a pure Al3004 sheet with 1mm in thickness. Using Minitab software based on Back Propagation Neural Network (BPNN) and Genetic Algorithm (GA), a second order mathematical prediction model was established to predict and optimize the wall angle. The results showed that the maximum forming angle was 87.071° and the best combination of these parameters to give the best performance of the experiment is as follows: tool diameter of 6mm, spindle speed of 180rpm, step depth of 0.4mm, and feed rate of 772mm/min.

Accuracy of dental model based on the state-of-the-art manufacturing technique (첨단 제조기술 기반으로 제작된 치과용 모형의 정확도에 관한 연구)

  • Kim, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.693-700
    • /
    • 2020
  • This study compared the accuracy and reliability of definitive casts fabricated from a digital impression and conventional impression technique. A master model with the prepared upper full-arch tooth was used. Samples of ten plaster models and ten polyurethane models were duplicated using a selected standard master model. Six linear measurements were recorded between the landmarks, directly on each of the stone models and the polyurethane models on two occasions by a double examiner. The Wilcoxon signed-rank test, interclass correlation coefficient (ICC), measurement error (MSE), and limit of agreement (LoA) were used for statistical analysis. The ICC ranged from 0.76 to 0.99 when comparing the stone models and polyurethane models. The mean difference between the stone models and polyurethane models ranged from 0.09mm to 0.20mm, suggesting that stone models might be slightly larger than polyurethane models. Based on this study, the accuracy of the polyurethane models in evaluating the performance of an oral scanner and subtractive technology was acceptable. Further studies will be needed on patient subjects under clinical conditions that may involve missing or malpositioned teeth and fixed dental prostheses because this study was limited to use a standard master model and duplicated sample models in a laboratory setting.

A Study on the 3D Measurement Data Application: The Detailed Restoration Modeling of Mireuksajiseoktap (미륵사지석탑 정밀복원모형 제작을 중심으로 한 3차원 실측데이터의 활용 연구)

  • Moon, Seang Hyen
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.76-95
    • /
    • 2011
  • After dismantled, Mireuksajiseoktap(Stone pagoda of Mireuksa Templesite) is being in the stage of restoration design. Now, different ways - producing restoration model, a 3 dimension simulation - have been requested to make more detailed and clearer restoration design prior to confirmation of its restoration design and actual restoration carry-out. This thesis proposes the way to build the detailed model for better restoration plan using extensively-used Reverse Engineering technique and Rapid Prototyping. It also introduces each stage such as a 3-dimension actual measurement, building database, a 3-dimension simulation etc., to build a desirable model. On the top of that, this thesis reveals that after dismantled, MIruksaji stone pagoda's interior and exterior were not constructed into pieces but wholeness, so that its looks can be grasped in more virtually and clearly. Secondly, this thesis makes a 3-dimension study on the 2-dimension design possible by acquiring basic materials about a 3-dimension design. Thirdly, the individual feature of each member like the change of member location can be comprehended, considering comparing analysis and joint condition of member. Lastly, in the structural perspective this thesis can be used as reference materials for structure reinforcement design by grasping destructed aspects of stone pagoda and weak points of the structure. In dismantlement-repair and restoration work of cultural properties that require delicate attention and exactness, there may be evitable errors on time and space in building reinforcement and restoration design based on a 2-dimension plan. Especially, the more complicate and bigger the subject is, the more difficult an analysis about the status quo and its delicate design are. A series of pre-review, based on the 3-dimension data according to actual measurement, can be one of the effective way to minimize the possibility that errors about time - space happen by building more delicate plan and resolving difficulties.