• Title/Summary/Keyword: Rankine's failure zone

Search Result 4, Processing Time 0.025 seconds

Stress Release Zone Around Sub-structure Constructed by Non-open Cut Methods (비개착공법으로 건설된 지하구조물 주변 지반 응력이완영역 규명)

  • Seo, Ho-Sung;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.480-488
    • /
    • 2016
  • For the development of areas around railway lines, subsurface construction using the non-open cut method under the railway has recently been increased. However, when a structure under a railway is constructed, the stress release of the ground is not considered an important factor in the design. In this study, laboratory tests were conducted to determine a zone of stress relaxation. Field tests using an inclinometer were performed to measure the horizontal displacement of the ground during non-open cut construction. The stress release zone and the subgrade stiffness were investigated by numerical analysis. The results of the laboratory tests indicated that the failure zone in the ground was similar to a Rankine's active earth pressure zone. The measured data from the inclinometer in the field tests showed that displacements started when a steel pipe was pushed into the ground. The results of numerical analysis show that lateral earth pressure was also close to Rankine's active earth pressure. The roadbed support stiffness of the soil around the structure decreased to 40% of the original value. The ground around the subsurface structure constructed using nonopen cut methods should be reinforced to maintain the running stability of train.

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Earth Pressure Distribution with Rigid Retaining Wall Movements (강성토유벽의 움직임에 따른 토압분포)

  • 강병희;채승호
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 1989
  • Lateral earth Pressure distributions due to the ,randy soil backfill behind the rigid vertical walls for three different wall movement modes are obtained by the elasto-plastic finite element analys of soil deformation, and these earth pressures are compared with both Rankine's and Dubrova's active earth pressures. Thereby, the effects of the magnitude and the mode of wall displacement on the earth pressure distribution are investigated. Three different modes of wall movement considered in this study are the rotation about bottom, the rotation about top and the translation. For the case of the wall rotation about top, the earth pressure distribution is shown as a reverse S-curve-shaped distribution due to the arching effect. Consequently, the point of application of the lateral thrust is much higher than one-third of the wall height from the base. And, comparing the other modes of wall movement, the magnitude and the point of appliestion of the lateral thrust for the wall rotation about top are larger and higher, respectively. The wedge-shaped plastic zone in the backfill at active failure is developed only for the mode of wall rotation about bottom. The lateral earth pressure distributions on the walls with inclined backfill of several different slopes are shown for the mode of wall rotation about bottom.

  • PDF

Computation of Passive Earth Pressure Coefficient considering Logarithmic Spiral Arc (대수나선 파괴면을 고려한 수동토압계수의 계산)

  • Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.425-433
    • /
    • 2019
  • In this study, a simple method of calculating the passive earth pressure coefficient, which is based on the limit equilibrium method, was proposed and the calculated earth pressure coefficients were compared with those of several researchers. The angle of the linear failure surface, which is combined with the logarithmic spiral arc, to the failure surfaces of the passive zone was derived and the whole passive thrust acting on the Rankine passive zone was considered in the proposed method instead of considering the horizontal component of passive thrust. The variations of the passive earth pressure coefficients of the proposed method showed the same tendency as that of the Coulomb's passive earth pressure coefficients with an inclined angle of backfill and internal friction angle. The magnitude of passive earth pressure coefficients of the proposed method were smaller than those of the Coulomb in almost all cases. A comparison of the passive earth pressure coefficients with the wall friction angle revealed the passive earth pressure coefficients of the proposed method to be smaller than those of the Coulomb and the differences between the two values increased with increasing internal friction angle and wall friction angle. A comparison of the passive earth pressure coefficients of the proposed method with those of the existing researchers for the considered internal friction angles of $25^{\circ}$, $30^{\circ}$, $35^{\circ}$, and $40^{\circ}$ and three wall friction angles revealed the maximum percentage differences for the Kerisel and Absi method, Soubra method, Lancellotta method, $Ant\tilde{a}o$ et al. method, Kame method, and Reddy et al. method to be 4.8%, 3.8%, 31.1%, 4.0%, 20.6%, and 12.8% respectively. The passive earth pressure coefficient and existing pressures were similar in all cases.