• Title/Summary/Keyword: Ranging Code

Search Result 102, Processing Time 0.026 seconds

Compressible Parabolized Stability Equation in Curvilinear Coordinate System and integration

  • Gao, Bing;Park, S.O.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.155-174
    • /
    • 2006
  • Parabolized stability equations for compressible flows in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Compressible and incompressible flat plate flow stability under two-dimensional and three¬dimensional disturbances has been investigated to test the present code. Results of the present computation are found to be in good agreement with the multiple scale analysis and DNS data. Stability calculation results by the present PSE code for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are also presented and are again seen to be as accurate as the spectral method.

The Effects on Horizontal Web Reinforcements for Reinforced High Strength Concrete Deep Beams (춤이 깊은 고강도 철근콘크리트 보의 수평전단철근 효과에 관한 연구)

  • 신성우;성열영;안종문;이광수;박무용;김형준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.337-344
    • /
    • 1996
  • Reinforced concrete deep beams with conpressive strengths in the range of 500kg/$\textrm{cm}^3$~750kg/$\textrm{cm}^3$ were tested under two-point loding. All the beams were singly reinforced with main steel percent $\rho$=1.29% and with nominal percentage of vertical shear reinflrcements $\rho_v$=0.26%. According to shear-span to depth ratio a/d. The beams were tested for four horizontal shear reinforcement ratio $\rho_h$, ranging from$\rho_h$=0.0 to $\rho_h$=0.53. The results indicate that the horizontal shear reinforcements of beams have an effect on failure load and on ductile behavior of deep beams. The test results are compared with predictions based on the current ACI Building Code. The computated reports in the paper will have designers assured for design of high strength concrete deep beam. Though ACI Code is relatively conservative and tend to non-economical, ACI Code has the merit that is easy to use.

  • PDF

A Fundamental Study on Wind Turbine Model of the Wind Power Generation (풍력발전용 모형터빈에 관한 기초적연구)

  • Kim, J.H.;Nam, C.D.;Kim, Y.H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

A Basis Study on Optimum Design of Air Turbine for Wind Power Generation (풍력발전용 공기터빈의 최적설계에 관한 기초 연구)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

A Basis Study on Optimum Design of Turbine for Wind Power Generation(II) (풍력발전용 터빈의 최적설계에 관한 기초 연구(II))

  • 김정환;김범석;김춘식;김진구;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.58-62
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap. height using NACA 0006, 0009, 0012, 0015, 0018, 0021 and 0024 airfoils. The six flaps which have 0.5% chord height difference were used. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives a promise for the future development of wind turbine optimum design.

  • PDF

Dust Radiative Transfer Model of Spectral Energy Distributions in Clumpy, Galactic Environments

  • Seon, Kwang-il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.52.2-52.2
    • /
    • 2018
  • The shape of a galaxy's spectral energy distribution ranging from ultraviolet (UV) to infrared (IR) wavelengths provides crucial information about the underlying stellar populations, metal contents, and star-formation history. Therefore, analysis of the SED is the main means through which astronomers study distant galaxies. However, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the mid-IR and Far-IR. I present the updated 3D Monte-Carlo radaitive transfer code MoCafe to compute the radiative transfer of stellar, dust emission through a dusty medium. The code calculates the emission expected from dust not only in pure thermal equilibrium state but also in non-thermal equilibrium state. The stochastic heating of very small dust grains and/or PAHs is calculated by solving the transition probability matrix equation between different vibrational, internal energy states. The calculation of stochastic heating is computationally expensive. A pilot study of radiative transfer models of SEDs in clumpy (turbulent), galactic environments, which has been successfully used to understand the Calzetti attenuation curves in Seon & Draine (2016), is also presented.

  • PDF

Toward a paradigm for civil structural control

  • Casciati, S.;Chassiakos, A.G.;Masri, S.F.
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.981-1004
    • /
    • 2014
  • Structural control is a very broad field combining the areas of automatic control and structural engineering, with applications ranging from aerospace and mechanical engineering to building and civil infrastructure systems. In this paper, the focus is placed on civil engineering applications only. The goal is to address the issues concurring to form the scientific paradigm. As a resut, possible future directions of research into this field are identified.

Evaluation of time-dependent deflections on balanced cantilever bridges

  • Rincon, Luis F.;Viviescas, Alvaro;Osorio, Edison;Riveros-Jerez, Carlos A.;Lozano-Galant, Jose Antonio
    • Computers and Concrete
    • /
    • v.28 no.5
    • /
    • pp.487-495
    • /
    • 2021
  • The use of prestressed concrete box girder bridges built by segmentally balanced cantilevers has bloomed in the last decades due to its significant structural and construction advantages in complex topographies. In Colombia, this typology is the most common solution for structures with spans ranging of 80-200 m. Despite its popularity, excessive deflections in bridges worldwide evidenced that time-dependent effects were underestimated. This problem has led to the constant updating of the creep and shrinkage models in international code standards. Differences observed between design processes of box girder bridges of the Colombian code and Eurocode, led to the need for a validation of in-service status of these structures. This study analyzes the long-term behavior of the Tablazo bridge with data scarcity. The measured leveling of this structure is compared with a finite-element model that consider the most widely used creep and shrinkage models in the literature. Finally, an adjusted model evidence excessive deflection on the bridge after six years. Monitoring of this bridge typology in Colombia and updating of the current design code is recommended.

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.