• Title/Summary/Keyword: Range-Space Dynamics

Search Result 79, Processing Time 0.024 seconds

A Study on Enhancement of Orbit Prediction Precision for Space Objects Using TLE (TLE를 이용한 우주물체 궤도예측 정밀도 향상 연구)

  • Yim, Hyeonjeong;Jung, Ok-Chul;Chung, Dae-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.3
    • /
    • pp.270-278
    • /
    • 2014
  • This paper describes an improvement of space objects orbit prediction. To screen possible collisions between operational satellites and space objects, the TLE (Two-Line Element) was used as pseudo-measurement and than the orbit determination and orbit prediction were performed through the flight dynamics system. For determining the orbits, the state vectors were assumed by a series of TLEs within a certain period. The propagation error was analyzed according to the fitting period and a number of pseudo-observations. In order to find out the improvement of orbit prediction with the proposed method, KOMPSAT-2, 3 having the precise orbit in the meter-level range were first applied. Then the result applied to space objects under the same conditions was analyzed. As a result of the RMS error comparison with the orbit prediction of space object, the precision of orbit prediction was improved by approximately 90% for seven days prediction. The improved orbit prediction of space objects can be utilized in the daily analysis for initial screening of the close space objects at high risk.

A Substorm Injection Event and the Radiation Belt Structure Observed by Space Radiation Detectors onboard Next Generation Small Satellite-1 (NEXTSat-1)

  • Yoo, Ji-Hyeon;Lee, Dae-Young;Kim, Eojin;Seo, Hoonkyu;Ryu, Kwangsun;Kim, Kyung-Chan;Min, Kyoungwook;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Kang, Kyung-In;Lee, Seunguk;Park, Jaeheung;Shin, Goo-Hwan;Park, SungOg
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.31-38
    • /
    • 2021
  • In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.

Variable Blue Stragglers in the Metal-Poor Globular Clusters in the Large Magellanic Cloud - Hodge 11 and NGC1466

  • Yang, Soung-Chul;Bhardwaj, Anupam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.35.2-35.2
    • /
    • 2021
  • Blue straggler stars (BSs) are "rejuvenated" main sequence stars first recognized by Allan Sandage from his observation of the prominent northern globular cluster M3 in the year of 1953. BSs are now known to be present in diverse stellar environments including open clusters, globular clusters, dwarf galaxies, and even the field populations of the Milky Way. This makes them a very useful tool in a wide range of astrophysical applications: Particularly BSs are considered to have a crucial role in the evolution of stellar clusters because they affect on the dynamics, the binary population, and the history of the stellar evolution of the cluster they belong to. Here we report a part of the preliminary results from our ongoing research on the BSs in the two metal-poor globular clusters (GCs) in the Large Magellanic Cloud (LMC), Hodge 11 and NGC1466. Using the high precision multi-band images obtained with the Advanced Camera for Survey (ACS) onboard the Hubble Space Telescope (HST), we extract time-series photometry to search for the signal of periodic variations in the luminosity of the BSs. Our preliminary results confirm that several BSs are intrinsic "short period (0.05 < P < 0.25 days)" variable stars with either pulsating or eclipsing types. We will discuss our investigation on the properties of those variable BS candidates in the context of the formation channels of these exotic main sequence stars, and their roles in the dynamical evolution of the host star clusters.

  • PDF

Reduced ion mass effects and parametric study of electron flat-top distribution formation

  • Hong, Jinhy;Lee, Ensang;Parks, George K.;Min, Kyoungwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.118.2-118.2
    • /
    • 2012
  • In particle-in-cell (PIC) simulation studies related to ion-ion two-stream instability, a reduced ion-to-electron mass ratio is often employed to save computation time. But it was not clearly verified how electrons dynamics are coupled with the slower evolution of ion-ion interactions under the external electric field. We have studied the ion beam driven instability using a 1D electrostatic PIC code by comparing different rescaling of parameter with real ion mass from the reference simulation with reduced ion mass. As the external electric field is stronger, the excited unstable mode range was more sensitively affected by the system size with the real mass ratio than the reduced ion mass. The results show that the reduced mass ratio should be used cautiously in PIC code as the electron dynamics can modify the ion instabilities. Additionally we found the formation of electron flat-top distribution in the final saturation stage. Simulation results show that in the early phase electrostatic solitary waves are quasi-periodically formed, but later they are fully dissipated resulting in heated, flat-top distributions. New electron beam components are occasionally formed. These are a consequence of the interaction with solitary wave structures. We parametrically investigate the development of electron phase space distributions for various drift speeds of ion beams and temperature ratios between ions and electrons

  • PDF

Analysis of Scaling Parameters of the Batch Unscented Transformation for Precision Orbit Determination using Satellite Laser Ranging Data

  • Kim, Jae-Hyuk;Park, Sang-Young;Kim, Young-Rok;Park, Eun-Seo;Jo, Jung-Hyun;Lim, Hyung-Chul;Park, Jang-Hyun;Park, Jong-Uk
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.183-192
    • /
    • 2011
  • The current study analyzes the effects of the scaling parameters of the batch unscented transformation on precision satellite orbit determination. Satellite laser ranging (SLR) data are used in the orbit determination algorithm, which consists of dynamics model, observation model and filtering algorithm composed of the batch unscented transformation. TOPEX/Poseidon SLR data are used by utilizing the normal point (NP) data observed from ground station. The filtering algorithm includes a repeated series of processes to determine the appropriate scaling parameters for the batch unscented transformation. To determine appropriate scaling parameters, general ranges of the scaling parameters of ${\alpha}$, ${\beta}$, k, $\lambda$ are established. Depending on the range settings, each parameter was assigned to the filtering algorithm at regular intervals. Appropriate scaling parameters are determined for observation data obtained from several observatories, by analyzing the relationship between tuning properties of the scaling parameters and estimated orbit precision. The orbit determination of satellite using the batch unscented transformation can achieve levels of accuracy within several tens of cm with the appropriate scaling parameters. The analyses in the present study give insights into the roles of scaling parameters in the batch unscented transformation method.

Numerical Study about Behavior of an Ejecting Projectile for Varying Initial Conditions (초기 조건 변화에 따른 사출 운동체의 거동에 관한 수치적 연구)

  • Jo, Sung Min;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.761-767
    • /
    • 2019
  • In the present study, analyses of initial behavior of an air-launched projectile for varying initial conditions are performed by coupling computational fluid dynamics and 6 degrees of freedom calculations. Accuracy of the present numerical methods is validated by comparing the present result with the measured data. Launching safety analyses are carried out for various ejecting conditions by considering weight of the projectile and magnitude of front and rear ejector forces as the major parameters of initial behavior of the projectile. A response surface of the projectile launching safety is obtained in the range of the major parameters. In all the conditions of zero rear ejector force, unsafe launching behavior is observed. As the weight of the projectile decreases, the initial launching behavior becomes more unsafe.

Real-time hybrid substructuring of a base isolated building considering robust stability and performance analysis

  • Avci, Muammer;Botelho, Rui M.;Christenson, Richard
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.155-167
    • /
    • 2020
  • This paper demonstrates a real-time hybrid substructuring (RTHS) shake table test to evaluate the seismic performance of a base isolated building. Since RTHS involves a feedback loop in the test implementation, the frequency dependent magnitude and inherent time delay of the actuator dynamics can introduce inaccuracy and instability. The paper presents a robust stability and performance analysis method for the RTHS test. The robust stability method involves casting the actuator dynamics as a multiplicative uncertainty and applying the small gain theorem to derive the sufficient conditions for robust stability and performance. The attractive feature of this robust stability and performance analysis method is that it accommodates linearized modeled or measured frequency response functions for both the physical substructure and actuator dynamics. Significant experimental research has been conducted on base isolators and dampers toward developing high fidelity numerical models. Shake table testing, where the building superstructure is tested while the isolation layer is numerically modeled, can allow for a range of isolation strategies to be examined for a single shake table experiment. Further, recent concerns in base isolation for long period, long duration earthquakes necessitate adding damping at the isolation layer, which can allow higher frequency energy to be transmitted into the superstructure and can result in damage to structural and nonstructural components that can be difficult to numerically model and accurately predict. As such, physical testing of the superstructure while numerically modeling the isolation layer may be desired. The RTHS approach has been previously proposed for base isolated buildings, however, to date it has not been conducted on a base isolated structure isolated at the ground level and where the isolation layer itself is numerically simulated. This configuration provides multiple challenges in the RTHS stability associated with higher physical substructure frequencies and a low numerical to physical mass ratio. This paper demonstrates a base isolated RTHS test and the robust stability and performance analysis necessary to ensure the stability and accuracy. The tests consist of a scaled idealized 4-story superstructure building model placed directly onto a shake table and the isolation layer simulated in MATLAB/Simulink using a dSpace real-time controller.

KFLOW Results of Airloads on HART-II Rotor Blades with Prescribed Blade Deformation

  • Sa, Jeong-Hwan;Kim, Jee-Woong;Park, Soo-Hyung;Park, Jae-Sang;Jung, Sung-Nam;Yu, Yung-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.52-62
    • /
    • 2009
  • A three-dimensional compressible Navier-Stokes solver, KFLOW, using overlapped grids has recently been developed to simulate unsteady flow phenomena over helicopter rotor blades. The blade-vortex interaction is predicted for a descending flight using measured blade deformation data. The effects of computational grid resolution and azimuth angle increments on airloads were examined, and computed airloads and vortex trajectories were compared with HART-II wind tunnel data. The current method predicts the BVI phenomena of blade airloads reasonably well. It is found from the present study that a peculiar distribution of vorticity of tip vortices in an approximate azimuth angle range of 90 to 180 degrees can be explained by physics of the shear-layer interaction as well as the dissipation of numerical schemes.

Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction

  • Moon, Kyung Rok;Kim, Tae Han;Song, Taek Lyul
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.363-374
    • /
    • 2012
  • This paper studies the problem of tracking a re-entry vehicle (RV) in order to predict its impact point on the ground. Re-entry target dynamics combined with super-high speed has a complex non-linearity due to ballistic coefficient variations. However, it is difficult to construct a database for the ballistic coefficient of a unknown vehicle for a wide range of variations, thus the reliability of target tracking performance cannot be guaranteed if accurate ballistic coefficient estimation is not achieved. Various techniques for ballistic coefficient estimation have been previously proposed, but limitations exist for the estimation of non-linear parts accurately without obtaining prior information. In this paper we propose the ballistic coefficient ${\beta}$ model-based interacting multiple model-extended Kalman filter (${\beta}$-IMM-EKF) for precise tracking of an RV. To evaluate the performance, other ballistic coefficient model based filters, which are gamma augmented filter, gamma bootstrapped filter were compared and assessed with the proposed ${\beta}$-IMM-EKF for precise tracking of an RV.

Dynamic Behavior Responses and Investigation of a Small-Class Satellite Having Sandwich Panel Structures (샌드위치 패널 구조로 된 소형 위성의 동적거동 응답 및 연구)

  • Cho, Hee-Keun;Lee, Sang-Hyun;Cha, Won-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.771-780
    • /
    • 2012
  • Naro-science satellite which will be launched by KSLV-1 has been successfully developed. Naro-science satellite is a 100kg-class small size science satellite whose structure is composed of one of a typical light and high strength aluminum honeycomb sandwich panel. In this research, dynamic responses of the satellite with respect to the design requirements were investigated by means of real experiments and numerical finite element analyses. The core technologies of the structure design and analysis about fracture and safety has been obtained through a wide range of analyses and tests. The results obtained in this study can be significantly utilized for the next generation satellite development.