• Title/Summary/Keyword: Range of variation

Search Result 3,245, Processing Time 0.032 seconds

Development of Doubled-haploid Population and Construction of Genetic Map Using SSR Markers in Rice (벼의 Doubled-haploid 집단육성과 SSR 마커를 이용한 유전자 지도작성)

  • Kim, Kyung-Min;Nam, Wu-Il;Kwon, Yong-Sham;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.179-184
    • /
    • 2004
  • A doubled-haploid (DH) population was developed through anther culture of F$_1$ plants obtained from a cross between a japonica cultivar, 'Nagdongbyeo', as male parent and a indica cultivar, 'Samgangbyeo', as female parent. Segregation modes for plant length, culm length, panicle length, third internode length, and days to heading in the DH lines showed nearly normal distribution with wide range of variation. A molecular map with 136 simple sequence repeat (SSR) markers was constructed using the DH population. The total map distance was 1,909 cM and the average interval of marker distance was 14 cM.

Effect of Cr on Mechanical Properties and Microstructure in 0.27% C-1.0% Si-1.5% Mn Steel (0.27% C-1.0% Si-1.5% Mn 강의 미세조직과 기계적성질에 미치는 Cr의 영향)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.4
    • /
    • pp.181-189
    • /
    • 2016
  • The variation in microstructure and mechanical properties during heat treatment was examined in a series of 0.27% C-1.0% Si-1.5% Mn steels with chromium contents in the range of 0 to 1.0 wt%. It was found that chromium decreased the martensite packet size through the austenite grain refinement and increased tensile strength in the as-quenched steel, about 70 MPa per 1.0 wt%. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel showed tensile strength of 1700 MPa in the as-quenched steel. The 0.27% C-1.0% Si-1.5% Mn-1.0% Cr steel revealed a full martensitic structure after air cooling from $900^{\circ}C$ to room temperature, showing air hardening characteristics. Tempering at $150^{\circ}C$ slightly decreased the tensile strength and increased elongation, which is in a good agreement with impact toughness result.

Characterization of PM10 and PM2.5 in Cheonan Area Using a Dust Monitor (Dust Monitor를 이용한 천안시 대기 중 PM10, PM2.5 오염특성 조사)

  • Lee, Hyun-Mi;Oh, Se-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.3
    • /
    • pp.367-375
    • /
    • 2008
  • To characterize atmospheric particles in Cheonan area, 5 monitoring sites representing highway area, commercial area, residential area, and industrial areas were selected, and the mass concentrations of PM10 and PM2.5 were monitored for 14 days at each site during 2007. The daily average PM10 and PM2.5 concentrations were in the range from 18.5 to $140.9{\mu}g/m^3$ and 8.2 to $116.6{\mu}g/m^3$, respectively, showing the highest mean concentrations at the commercial area site and the lowest concentration at the residential area site. The daily average PM 10 concentrations at Shinan (Commercial area) and Bakseok (Industrial area) sites were exceeded the current National Standard for 1 and 2 days during the monitoring periods. The fractions of PM2.5 in PM10 were above 70% for all sites, indicating fine particles are the major constituent of atmospheric particles in Cheonan. The results indicate that PM10 concentrations in Cheonan are at the concerning level, and the control strategy for fine particles is necessary to address this issue.

Optimization of Flap Shape and Position for Two-dimensional High Lift Device (2차원 고양력장치의 플랩 형상 및 위치 최적화)

  • Park, Youngmin;Kang, Hyoungmin;Chung, Jindeog;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

Seasonal Variability of Marine Algal Flora and Community Structure at Gumgap, Jindo, on the Southwestern Coast of Korea (한국 남서해안 진도군 금갑의 해조상 및 군집구조의 계절 변화)

  • Yoo, Hyun-Il;Heo, Jin-Suk;Choi, Han-Gil
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.1
    • /
    • pp.300-307
    • /
    • 2015
  • Seasonal variation in marine macroalgal community structure was examined at the intertidal zones of Geumgap, Jindo, Korea, from October 2013 to August 2014. In total, 56 macroalgal species were identified, including 9 green, 12 brown, and 35 red algae. Annual seaweed biomass was 548.96 g wet wt. /$m^2$ with seasonal range between 371.08 g wet wt. /$m^2$ at summer and 32.91 g wet wt. /$m^2$ at winter. The dominant seaweed in terms of biomass was Sargassum thunbergii and subdominant species were Gelidium elegans, Sargassum fusiforme, and Ishige okamurae. The vertical distribution of seaweeds from the upper to lower intertidal zones was Gloiopeltis spp., Ulva spp.- S. thunbergii, S. fusiforme, Ishige okamurae - S. thunbergii, S. fusiforme, G. elegans. Annual seaweed coverage, richness index (R), evenness index (J'), and diversity index (H') values were 27.95%, 6.10, 0.38, and 1.38, respectively. Coarsely branched form was the most dominant functional group in terms of species number and biomass among benthic macroalgal species.

Summer Marine Algal Communities at Dokdo, Korea (독도의 하계 해조 군집)

  • Choi, Chang-Geun;Kwon, Chun-Jung;Kim, Mi-Kyong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.26 no.5
    • /
    • pp.1037-1043
    • /
    • 2014
  • We extensively observed macroalgal assemblages of species composition and biomass of summer benthic marine algae at Dokdo in the East sea of Korea. A total of 102 species (12 Chlorophyta, 36 Phaeophyta, and 54 Rhodophyta) were identified in quadrats and were analysed qualitatively to define the variation patterns. Biomass in dry weight according to various depths ranged between 146.0 to 764.2 g m-2 at study sites. Mean biomass at the investigated sites was greater in the 10m depth range than in the 5 and 15m depths at Dongdo. The flora could be classified into six functional groups: coarsely branched form (51.0%), filamentous form (17.7%), thick leather form (15.7%), sheet form (5.9%), jointed calcareous form (4.9%) and crustose form (4.9%). The R/P, C/P and (R+C)/P value were 1.67, 0.50 and 2.17, respectively. The number of marine algae species and the biomass in Dokdo area were markedly reduced as compared with those in the previous studies. This result suggests possible future changes in the algal vegetation, considering coastal marine environment of this area.

Characteristics on the Temperature Distribution in Steel Girder Bridge by using Gauge Measurement (계측에 의한 강거더교의 온도분포 특성)

  • Lee, Seong-Haeng;Cheung, Jin-Hwan;Kim, Kyoung-Nam;Hahm, Hyung-Gil;Jung, Kyoung-Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.283-294
    • /
    • 2011
  • The variation of temperature in the steel girder bridge by air temperature is measured. A correlation between the daily temperature range, the maximum and minimum temperatures of the day, and the temperature of the bridge are analyzed. With the statistical data from the Korea Meteorological Administration, the temperature correlations analyzed in this study is able to predict temperature variations between the upper flange and the lower flange which calculates the realistic displacement values of a movable support and an expansion joint in design.

Effect of Si Contents on Structure and Mechanical Properties of Al-Si Alloy Metallic Foams (Al-Si 합금 발포금속의 조직 및 기계적 특성에 미치는 Si함량의 영향)

  • Kim, Byeong-Gu;Tak, Byeong-Su;Jeong, Seung-Reung;Jeong, Min-Jae;Hur, Bo-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.1
    • /
    • pp.22-28
    • /
    • 2010
  • Metal foam is a porous or cellular structure material and representative property is a very high porosity. Foamed materials have very special properties such as sound, vibration, energy and impact absorption capacity. Especially this properties are widely used for safety demands of architecture, auto and aircraft industry. But metal foam need to increased its compression strength and hardness. This study were researched about Al-Si alloy foams with variation amount of Si contents for their fabrication and properties such as porosity, cell structure, microstructure and mechanical properties. The result are that the range of pore size is 2~4 $mm{\phi}$, the high porosity are 88%, high yield strength is 1.8MPa, the strain ratio is 60~70% and vickers hardness is 33.1~50.6.

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying;Chen, Peng
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.543-557
    • /
    • 2020
  • This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

Synthesis and Characterization of Fluorinated Poly (maleimide-co-methacrylate)s for Optical Waveguiding Materials (광도파로용 Fluorinated Poly(maleimide-co-methacrylate)s의 합성과 특성)

  • 김원래;한학수;한관수;장웅상;이철주
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.253-259
    • /
    • 2002
  • The objective of this study is to obtain thermally stable and low optical loss polymers for optical waveguiding materials. The crosslinkable poly (maleimide-co-methacrylate)s were synthesized using a pentafluorophenylmaleimide (an optical loss reducer), two methacrylate derivatives (refractive index controllers), and a glycidylmethacrylate (a crosslinker). These copolymers exhibited good thermal stability and could be thermally crosslinked by heat treatment. The refractive indexes of the copolymers could be precisely controlled by the variation of comonomer feed ratio, which was in the range of 1.45 ~ 1.49. These copolymers had very low birefringence of $6{ imes}10^{-4}$ ~ $1{ imes}10^{-4}$. These copolymers were crosslinked by contact printing and then developed by wet etching to obtain high quality waveguide pattern.