• Title/Summary/Keyword: Range finder

Search Result 181, Processing Time 0.023 seconds

Pedestrian Safety Road Marking Detection Using LRF Range and Reflectivity (LRF (Laser Range Finder) 거리와 반사도를 이용한 보행자 보호용 노면표시 검출기법 연구)

  • Im, Sung-Hyuck;Im, Jun-Hyuck;Yoo, Seung-Hwan;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.62-68
    • /
    • 2012
  • In this paper, a detection method of a pedestrian safety road marking was proposed. The proposed algorithm uses laser range and reflectivity of a range finder (LRF). For a detection of crosswalk marking and stop line, the DFT (Discrete Fourier Transform) of reflectivity and cross-correlation method between the reference replica and the measured reflectivity are used. A speed bump is detected through measuring an altitude difference of two LRFs which have the different tilted angle. Furthermore, we proposed a velocity constrained a detection method of a speed bump. Finally, the proposed methods are tested in on-line, on the pavement of a road. The considered road markings are wholly detected. The localization errors of both road markings are smaller than 0.4 meter.

A vision system for autonomous material handling by static and dynamic range finding (정적 및 동적 range 검출에 의한 원료 처리 자동화용 vision 시스템)

  • 안현식;최진태;이관희;신기태;하영호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.10
    • /
    • pp.59-70
    • /
    • 1997
  • Until now, considerable progress has been made in the application of range finding techanique performing direct 3-D measurement from the object. However, ther are few use of the method in the area of the application of material handing. We present a range finding vision system consisting of static and dynamic range finders to automate a reclaimer used for material handling. A static range finder detects range data of the front part of the piles of material, and a height map is obtained from the proposed image processing algorithm. The height map is used to calculate the optimal job path as features for required information for material handling function. A dynamic range finder attached on the side of the arm of the reclaimer detects the change of the local properties of the material with the handling function, which is used for avoiding collision and detecting the ending point for changing direction. the developed vision systm was applied to a 1/20 simulator and the results of test show that it is appropriate to use for automating the material handling.

  • PDF

A Local Path Planning Algorithm of Free Ranging Mobile Robot Using a Laser Range Finder (레이저거리계를 이용한 자율 주행로봇의 국부 경로계획 알고리즘)

  • 차영엽;권대갑
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.887-895
    • /
    • 1995
  • Considering that the laser range finder has the excellent resolution with respect to angular and distance measurements, a sophisticated local path planning algorithm is achieved by subgoal and sub-subgoal searching methods. The subgoal searching finds the passable ways between obstacles and selects the optimal pathway in order to reduce the moving distanced from start point to given to given goal. On the other hand, the sub-subgoal searching corrects the path given in subgoal searching in the case of which the mobile robot will collide with obstacles. Also, the effectiveness of the established local path planning and local minimum avoiding algorithm are estimated by computer simulation and experimentation in complex environment.

A local path planning algorithm for free-ranging mobil robot (자율 주행로봇을 위한 국부 경로계획 알고리즘)

  • Cha, Y.Y.;Gweon, D.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.88-98
    • /
    • 1994
  • A new local path planning algorithm for free-ranging robots is proposed. Considering that a laser range finder has the excellent resolution with respect to angular and distance measurements, a simple local path planning algorithm is achieved by a directional weighting method for obtaining a heading direction of nobile robot. The directional weighting method decides the heading direction of the mobile robot by estimating the attractive resultant force which is obtained by directional weighting function times range data, and testing whether the collision-free path and the copen parthway conditions are satisfied. Also, the effectiveness of the established local path planning algorithm is estimated by computer simulation in complex environment.

  • PDF

Improvement of self-mixing semiconductor laser range finder and its application to range-image recognition of slowly moving object

  • Suzuki, Takashi;Shinohara, Shigenobu;Yoshida, Hirofumi;Ikeda, Hiroaki;Saitoh, Yasuhiro;Nishide, Ken-Ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.388-393
    • /
    • 1992
  • An infrared range finder using a self-mixing laser diode (SM-LD), which has been proposed and developed by the Authors, can measure not only a range of a moving target but its velocity simultaneously. In this paper, described is that the precise mode-hop pulse train can be obtained by employing a new signal processing circuit even when the backscattered light returning into the SM-LD is much more weaker. As a result, the distance to a tilted square sheet made from aluminium or white paper, which is placed 10 cm through 60 cm from the SM-LD, is measured with accuracy of a few percent even when the tilting angle is less than 75 degrees or 85 degrees, respectively. And in this paper, described is the range-image recognition of a plane object under the condition of standstill. The output laser beam is scanned by scanning two plane mirrors-equipped with each stepping motor. And we succeeded in the acquisition of the range-image of a plane object in a few tens of seconds. Furthermore, described is a feasibility study about the range-image recognition of a slowly moving plane object.

  • PDF

Distance measurement using pulsed eye-safe laser (펄스형 eye-safe 레이저를 이용한 거리측정)

  • 유병헌;조성학;장원석;김재구;황경현;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.106-109
    • /
    • 2004
  • In this project, we have developed the eye-safe LRF system of 1.54 ${\mu}{\textrm}{m}$ wavelength using OPO. The maximum measured distance was 3.7km in outdoor experiment. We used Nd:YAG (1064nm) as a laser medium. It was applied BBO to construct the system. We also developed a time-counter for the range finder using a method of TOF (time of flight). The counter-clock used at the time counter was 320MHz making resolution within $\pm$1m. Start and stop signals were detected by two channel systems using PIN and APD. The LRF's repetition rate was 4 times per minute. The energy was measured to be over 9mJ. And, pulse-duration was 23ns. Resolution was $\pm$2m at the distance measurement using a target.

  • PDF

A geometric analysis of range measurement error (거리 영상 측정 오차의 기하학적 분석)

  • 윤강식;이병욱;박래홍
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1259-1265
    • /
    • 1997
  • We investigate depth measurement error of a range finder based on triangulation method. Geometric analysis resulted in intuitive understanding of the error sensitivity. We show that the depth error is propostional to the distance between the object andthe camera. The measurement value has the highest accuracy when the line connecting the focal point of the camera and the object is perpendicular to the line joining the object and the light source of herange finder. Also we analyze the error using a perturbation method and verify that the results are identical through an experiment.

  • PDF

Human following of Indoor mobile service robots with a Laser Range Finder (단일레이저거리센서를 탑재한 실내용이동서비스로봇의 사람추종)

  • Yoo, Yoon-Kyu;Kim, Ho-Yeon;Chung, Woo-Jin;Park, Joo-Young
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.86-96
    • /
    • 2011
  • The human-following is one of the significant procedure in human-friendly navigation of mobile robots. There are many approaches of human-following technology. Many approaches have adopted various multiple sensors such as vision system and Laser Range Finder (LRF). In this paper, we propose detection and tracking approaches for human legs by the use of a single LRF. We extract four simple attributes of human legs. To define the boundary of extracted attributes mathematically, we used a Support Vector Data Description (SVDD) scheme. We establish an efficient leg-tracking scheme by exploiting a human walking model to achieve robust tracking under occlusions. The proposed approaches were successfully verified through various experiments.

A development of PSD sensor system for navigation and map building in the indoor environment

  • Jeong, Tae-Cheol;Lee, Chang-Hwan;Park, Jea-Yong;Hyun, Woong-Keun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.724-728
    • /
    • 2005
  • This paper represents a development of a range finder sensor module for indoor 2-D mapping and modified Hough transformation for map building. A range finder sensor module has been developed by using optic PSD (Position Sensitive Detector) sensor array at a low price. While PSD sensor is cost effective and light weighting, it has switching noise and white noise. To remove these noises, we propose a heuristic filter. For line-based map building, also we proposed advanced Hough transformation and navigation algorithm. Some experiments were illustrated for the validity of the developed system.

  • PDF

Compact and precision range finder using self-mixing semiconductor laser

  • Shinohara, Shigenobu;Andou, Minoru;Yoshida, Hirofumi;Ikeda, Hiroaki;Miyata, Masafumi;Yoshida, Jun-Ichi;Nishide, Ken-Ichi;Sumi, Masao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.972-978
    • /
    • 1989
  • Proposed is improved compact self-mixing type semiconductor-laser range finder, which measures mode-hop time interval (MHI). Measurement error caused by the fluctuation of MHI is greatly reduced by averaging many contiguous MHI's. The main cause of measurement error 1.5% at ranges from 0.1m to 0.8m is attributed to the optical phase change of a returned light from a focusing lens. Accuracy improvement by stabilization of the returned light is suggested.

  • PDF