• Title/Summary/Keyword: Range cutting

Search Result 342, Processing Time 0.023 seconds

A Study on the Prediction of the Form of Chips using Cutting Forces (절삭력을 이용한 칩형태의 예측에 관한 연구)

  • Lee, Sang-Jun;Choi, Man-Seong;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.1
    • /
    • pp.40-49
    • /
    • 1988
  • The chip control problem is one of the important subjects to be studied in the metal cutting process. Especially, an important practical problem concerns the form of chips pro- duced in machining since this has important implications relative to : 1. Personal safety. 2. Possible damage to equipment and product. 3. Handling and disposal of swarf after machining. 4. Cutting forces, temperatures, and tool life. However, a dependable way to predict the form of chips in a wide range of cutting conditions has not been established satisfactorily. In this paper, the relationship between the form of chips and the ratios of cutting forces were studied experimentally. According to what the experiments have been carried out in the turning process the main results can be summarized as follows : 1. By use of the multiple linear regression model, emperical formulas which are suitable to wide ranges of cutting conditions with accuracy were obtained satisfactorily. 2. The correlations between the form of chips based upon the classification by Henriksen and the ratios of cutting forces, namely (feeding force/thrust force), (principal force/feeding force) were determined. 3. Using above results, the algorithms which predict the form of chips were constituted. With these algorithms, the form of chips in a wide range of cutting of cutting conditions can be predicted.

  • PDF

A Study on SS400 Cutting Characteristics using Continuous Wave Fiber Laser (연속파 파이버 레이저를 이용한 SS400의 절단 특성에 관한 연구)

  • Oh, Yong-Seok;Lee, Ka-Ram;Park, Eun-Kyeong;Yoo, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.644-650
    • /
    • 2012
  • This paper show the 2kW fiber laser cutting properties of SS400. The study was comparison of traditional 4kW $CO_2$ Laser cutting and 2kW Fiber laser cutting characteristics for the application of Industrial 2D Laser Cutting Machine. The laser used in this investigation was an IPG YLU-2000 multi-mode Ytterbium Fiber machine with a maximum power of 2000W and a wave length of 1070 nm. The laser was used in its Continuous Wave (CW) mode with an approximately top hat beam intensity distribution. Fiber laser high quality cuts at a large range of speeds (ranging from 2000 to 3800 mm/min) which has been obtained for the 2.3mm Sheet of SS400. 2kW power Fiber laser cut was able to max. 20mm sheets of SS400 (speed range from 650 to 850 mm/min). Fiber laser cutting used in conventional hole nozzle could cut 12mm SS400 but used in special dual cutting nozzle could cut 20mm SS400.

선삭공정용 데이터베이스 운용기술의 개발

  • 이형국;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.334-340
    • /
    • 1991
  • The information with regard to the working rance of lathe, cutting tool, cutting condition is managed as detabase system for turning operation. Date with regard to the working range of lathe, cutting tool, cutting condition are stroed by the DBMS(Data Base Management System) and can be added, modified, deleted and retrieved. Data stored in database system are searched to select the most proper cutting tool and cutting condition with the input data fed from the design stage. The system developed in this work is operated by the pull down menu on the IBM PC/AT personal computer, or compatible series.

Micro Heater Trimming using UV Laser (UV레이저를 이용한 마이크로 히터 트리밍)

  • Yoo, Seungryeol
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.36-40
    • /
    • 2017
  • In this paper, a new method of laser trimming of thick film heater is studied. Various laser waves (IR, Green, UV) are used to ablation the heater and the process parameters are also presented. For given initial printed resisters, the cutting length should be prepared to obtain the target resister value in advance. Therefore, the cutting model is very important. The well-known model was tested and proven that it is valid only within a certain range of cutting length. A new model is proposed for a wide range of resister laser trimming. The cutting lengths and resister variation was obtained and formulated. To verify the presented method, the cutting lengths of each resister are calculated for various target resister value and laser trimming using UV is conducted.

  • PDF

Optimal Cutting Condition of Rough Cutting Using Trochoidal Motion (Trochoidal 방식을 이용한 황삭가공의 최적조건)

  • Bong, Ha Yoon;Kim, Moon Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.13-19
    • /
    • 2017
  • In modern industry, the machining process is very important for manufacturing various products. More than 80% of machining processes apply rough cutting. The target of this study is to establish the optimal condition of rough cutting using trochoidal motion for improving productivity. For research, the range of cutting conditions is defined by trochoidal motion. The cutting time and tolerance are measured and evaluated according to the cutting conditions of machining. Experimental data are utilized for comparing trochoidal motion and contouring. It is found that the cutting time of trochoidal motion is two times less than that of contouring with optimal cutting conditions. To conclude, trochoidal motion for rough cutting under appropriate cutting conditions improves productivity and shortens processing time significantly.

Analysis of cutting characteristics in micro machining using cutting force coefficient (절삭력 계수를 통한 마이크로 가공의 절삭 특성 분석)

  • Lee H.U.;Cho D.W.;Park J.K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.483-488
    • /
    • 2005
  • The complex three-dimensional miniature components are needed for a wide range of applications from the aerospace to the biomedical industries. To manufacture these products, micro machining that can make a high aspect ratio part and has good accuracy is widely researched. In this paper, cutting characteristics were analyzed in micro machining using cutting force coefficients, which are the specific cutting force for normal and frictional direction of rake surface. From measured cutting force in micro end milling, cutting condition independent cutting force coefficients were determined and used for analysing the characteristics of micro cutting. Using the cutting force coefficient, 써써써.

  • PDF

Effects of Soil Water Potential of Cutting Bed and Relative Humidity on the Rooting of Stem Cutting (삽목발근촉진(揷木發根促進)을 위한 토양(土壤) 및 대기수분관리(大氣水分管理))

  • Hong, Seong Cheon
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.59-66
    • /
    • 1979
  • This experiment was carried out to know the effects of soil water potential of cutting bed and relative humidity on the rooting of stem cutting in the field plots. The results obtained were as follows; 1. The most number of the rooted cutting was found from 70 to 80% of relative humidity in Spring and from 90 to 100% in Summer respectively. 2. It was found that the number of rooted cutting was the least in the range of 0 to-0.006 bar of soil water potential of cutting bed in the case of Spring cutting, whereas in Summer the number of the rooted cutting was the most one in the range of -0.049 to -0.124 bar of soil water potential of cutting bed. 3. High signification was recognized between the relative humidity and the number of the rooted cutting only in the Spring cutting, but that of soil water potential and the number of the rooted cutting was found to be significant in every season.

  • PDF

Prediction and Measurement of Cutting Force in Side-Milling (사이드 밀링 가공의 절삭력 측정 및 예측)

  • Lee, Chang-Ho;Yang, Min-Yang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3
    • /
    • pp.437-446
    • /
    • 2013
  • There have been numerous studies on end milling processes. However, these have been restricted to the application of tools for special cutting purposes. A side milling cutter can handle long, deep, and open slots in a more efficient manner, and it provides the best stability and productivity for this type of milling. In this paper, a method to predict the cutting forces in side milling is described, and simulated cutting forces are compared with those obtained by cutting experiments. In particular, the side milling process easily generates relative motion between the tools and the workpiece because it produces intermittent cutting forces that cause vibrations over a wide frequency range. Therefore, the application of a dynamic cutting model instead of a static cutting model is appropriate to forecast the cutting forces more accurately.

A Study on the Effectiveness of Finite Element Method in Orthogonal Cutting (2차원 절삭에서 FEM 해석의 유효성에 관한 연구)

  • Youn, Jae-Woong;Kim, Hong-Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.42-49
    • /
    • 2010
  • In general, the direct experimental approach to study machining processes is expensive and time consuming, especially when a wide range of parameters are included: tool, geometry, materials, cutting conditions, etc. The aim of this study is to verify the effectiveness of finite element method for orthogonal cutting process by comparing the simulated cutting forces with measured results. Two commercialized finite element codes $AdvantEdge^{TM}$ and Deform-$2D^{TM}$ have been used to simulate the cutting forces in orthogonal cutting process. In this paper, estimated cutting and feed force components are compared with experimental results for different two materials. As a result, it has been found that FEM simulation is effective for understanding and predicting the orthogonal cutting process although some improvements on friction model and remeshing process are needed.

Development of mechanistic model for cutting force prediction considering cutting tool states in face milling (정면밀링공정에서 공구상태 변화를 고려한 절삭력예측 모델의 개발)

  • Lee, S.S.;Kim, H.S.;Lee, Y.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.63-73
    • /
    • 1995
  • A mechanistic force system model considering the flank wear for the face milling process has been developed. The model predicts variation of the cutting forces according to flank wear in face milling over a range of cutting conditions, cutter geometries and cutting process geometries including relative positions of cutter to workpiece and rounouts. Flycutting and multitoth cutting teste were conducted on SS41 mild steel with sintered carbide tool. In order to verify the mechanistic force model considering the flank wear of cutting tools, a series of experiments was performed with single and multitooth cutters in various cutting conditions. The results show good agreement between the predicted and measured cutting force profiles and magnitudes in time and frequency domains.

  • PDF