• Title/Summary/Keyword: Range Detection

Search Result 3,037, Processing Time 0.03 seconds

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.

A Study on Efficient Threshold Level for False Alarm Probability Decrease (오 경보 확률 감소를 위한 효율적인 임계치에 대한 연구)

  • Lee, Kwan-Hyeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.140-146
    • /
    • 2015
  • We have studied an efficient threshold level for desired target detection in radar system in the paper. A desired target searching detection method detects desired target according to changing for false alarm probability. This time, false alarm probability is close relation to threshold level. Low threshold level can improve detection for desired target, but detect noise signal. Therefor, This method is not good one. In this paper, we propose efficient threshold level method in order to estimation for desired target. Through simulation, we are analysis and performance to compare general method with proposal method. We show that proposed method is more good proof than general method.

A Study on the Detection of Small Arm Rifle Sound Using the Signal Modelling Method (신호 모델링 기법을 이용한 소총화기 신호 검출에 대한 연구)

  • Shin, Mincheol;Park, Kyusik
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.443-451
    • /
    • 2015
  • This paper proposes a signal modelling method that can effectively detect the shock wave(SW) sound and muzzle blast(MB) sound from the gunshot of a small arm rifle. In order to localize a counter sniper in battlefield, an accurate detection of both shock wave sound and muzzle blast sound are the necessary keys in estimating the direction and the distance of the counter sniper. To verify the performance of the proposed algorithm, a real gunshot sound in a domestic military shooting range was recorded and analyzed. From the experimental results, the proposed signal modelling method was found to be superior to the comparative system more than 20% in a shock wave detection and 5% in a muzzle blast detection, respectively.

An Improved RF Detection Algorithm Using EMD-based WT

  • Lv, Xue;Wang, Zekun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3862-3879
    • /
    • 2019
  • More and more problems for public security have occurred due to the limited solutions for drone detection especially for micro-drone in long range conditions. This paper aims at dealing with drones detection using a radar system. The radio frequency (RF) signals emitted by a controller can be acquired using the radar, which are usually too weak to extract. To detect the drone successfully, the static clutters and linear trend terms are suppressed based on the background estimation algorithm and linear trend suppression. The principal component analysis technique is used to classify the noises and effective RF signals. The automatic gain control technique is used to enhance the signal to noise ratios (SNR) of RF signals. Meanwhile, the empirical mode decomposition (EMD) based wavelet transform (WT) is developed to decrease the influences of the Gaussian white noises. Then, both the azimuth information between the drone and radar and the bandwidth of the RF signals are acquired based on the statistical analysis algorithm developed in this paper. Meanwhile, the proposed accumulation algorithm can also provide the bandwidth estimation, which can be used to make a decision accurately whether there are drones or not in the detection environments based on the probability theory. The detection performance is validated with several experiments conducted outdoors with strong interferences.

Partial Discharge Monitoring Technology based on Distributed Acoustic Sensing (분포형 광음향센싱 기반 부분방전 모니터링 기술 연구)

  • Huioon, Kim;Joo-young, Lee;Hyoyoung, Jung;Young Ho, Kim;Myoung Jin, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • This study describes a novel method for detecting and measuring partial discharge (PD) on an electrical facility such as an insulated power cable or switchgear using fiber optic sensing technology, and a distributed acoustic sensing (DAS) system. This method has distinct advantages over traditional PD sensing techniques based on an electrical method, including immunity to electromagnetic interference (EMI), long range detection, simultaneous detection for multiple points, and exact location. In this study, we present a DAS system for PD detection with performance evaluation and experimental results in a simulated environment. The results show that the system can be applied to PD detection.

Development of an Object Collision Detection Algorithm for Prevention of Collision Accidents on Living Roads (생활도로에서의 충돌사고 예방을 위한 객체 충돌 감지 알고리즘 개발)

  • Seo, Myoung Kook;Shin, Hee Young;Jeong, Hwang Hun;Chae, Jun Seong
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • Traffic safety issues have recently been seriously magnified, due to child deaths in apartment complexes and parking lots. Accordingly, traffic safety technologies are being developed to recognize dangerous situations on living roads and to provide warning services. In this study, a collision detection algorithm was developed to prevent collision accidents between moving objects, by using object type and location information provided from CCTV monitoring devices. To determine the exact collision between moving objects, an object movement model was developed to predict the range of movement by considering the moving characteristics of the object, and a collision detection algorithm was developed to efficiently analyze the presence and location of the collision. The developed object movement model as well as the collision detection algorithm were simulated, in a virtual space of an actual living road to verify performance and derive supplementary matters.

Copy Paper as a Platform for Low-cost Sensitive Glucose Sensing

  • Ye Lin Kim;Young-Mog Kim;Junghwan Oh;Joong Ho Shin
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.16-21
    • /
    • 2023
  • This study reports the potential of using commercial copy papers as substrates for simple sensitive glucose detection. Typical paper-based devices use filter papers as porous substrates that can contain reagents; however, this is the first study to report the use of copy papers for the purpose of enhancing enzymatic colorimetric detection. Glucose detection using glucose oxidase, horseradish peroxidase and potassium iodide was performed on a copy paper, cellulose-based filter paper, and polyethylene film. The results indicated that the copy paper exhibited a stronger coloration than the other substrates. Reagents required for detection were dried on the copy paper, and a 3D-printed holder was designed to provide an environment for consistent imaging, making it a convenient cost-effective option for point-of-care testing using a mobile phone camera. The simple paper-based glucose sensor exhibited a linear range of 0.1-20 mM, limit of quantification of 0.477 mM, and limit of detection of 0.143 mM.

Robust 3D Object Detection through Distance based Adaptive Thresholding (거리 기반 적응형 임계값을 활용한 강건한 3차원 물체 탐지)

  • Eunho Lee;Minwoo Jung;Jongho Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.106-116
    • /
    • 2024
  • Ensuring robust 3D object detection is a core challenge for autonomous driving systems operating in urban environments. To tackle this issue, various 3D representation, including point cloud, voxels, and pillars, have been widely adopted, making use of LiDAR, Camera, and Radar sensors. These representations improved 3D object detection performance, but real-world urban scenarios with unexpected situations can still lead to numerous false positives, posing a challenge for robust 3D models. This paper presents a post-processing algorithm that dynamically adjusts object detection thresholds based on the distance from the ego-vehicle. While conventional perception algorithms typically employ a single threshold in post-processing, 3D models perform well in detecting nearby objects but may exhibit suboptimal performance for distant ones. The proposed algorithm tackles this issue by employing adaptive thresholds based on the distance from the ego-vehicle, minimizing false negatives and reducing false positives in the 3D model. The results show performance enhancements in the 3D model across a range of scenarios, encompassing not only typical urban road conditions but also scenarios involving adverse weather conditions.

An Automatic Portscan Detection System with Adaptive Threshold Setting

  • Kim, Sang-Kon;Lee, Seung-Ho;Seo, Seung-Woo
    • Journal of Communications and Networks
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • For the purpose of compromising hosts, attackers including infected hosts initially perform a portscan using IP addresses in order to find vulnerable hosts. Considerable research related to portscan detection has been done and many algorithms have been proposed and implemented in the network intrusion detection system (NIDS). In order to distinguish portscanners from remote hosts, most portscan detection algorithms use a fixed threshold that is manually managed by the network manager. Because the threshold is a constant, even though the network environment or the characteristics of traffic can change, many false positives and false negatives are generated by NIDS. This reduces the efficiency of NIDS and imposes a high processing burden on a network management system (NMS). In this paper, in order to address this problem, we propose an automatic portscan detection system using an fast increase slow decrease (FISD) scheme, that will automatically and adaptively set the threshold based on statistical data for traffic during prior time periods. In particular, we focus on reducing false positives rather than false negatives, while the threshold is adaptively set within a range between minimum and maximum values. We also propose a new portscan detection algorithm, rate of increase in the number of failed connection request (RINF), which is much more suitable for our system and shows better performance than other existing algorithms. In terms of the implementation, we compare our scheme with other two simple threshold estimation methods for an adaptive threshold setting scheme. Also, we compare our detection algorithm with other three existing approaches for portscan detection using a real traffic trace. In summary, we show that FISD results in less false positives than other schemes and RINF can fast and accurately detect portscanners. We also show that the proposed system, including our scheme and algorithm, provides good performance in terms of the rate of false positives.

Design and Implementation of the Intrusion Detection Pattern Algorithm Based on Data Mining (데이터 마이닝 기반 침입탐지 패턴 알고리즘의 설계 및 구현)

  • Lee, Sang-Hoon;Soh, Jin
    • The KIPS Transactions:PartC
    • /
    • v.10C no.6
    • /
    • pp.717-726
    • /
    • 2003
  • In this paper, we analyze the associated rule based deductive algorithm which creates the rules automatically for intrusion detection from the vast packet data. Based on the result, we also suggest the deductive algorithm which creates the rules of intrusion pattern fast in order to apply the intrusion detection systems. The deductive algorithm proposed is designed suitable to the concept of clustering which classifies and deletes the large data. This algorithm has direct relation with the method of pattern generation and analyzing module of the intrusion detection system. This can also extend the appication range and increase the detection speed of exiting intrusion detection system as the rule database is constructed for the pattern management of the intrusion detection system. The proposed pattern generation technique of the deductive algorithm is used to the algorithm is used to the algorithm which can be changed by the supporting rate of the data created from the intrusion detection system. Fanally, we analyze the possibility of the speed improvement of the rule generation with the algorithm simulation.