• Title/Summary/Keyword: Random partition

Search Result 41, Processing Time 0.015 seconds

Development of Sample Survey Design for the Industrial Research and Development Statistics (표본조사에 의한 기업 연구개발활동 통계 작성방안)

  • Cho, Seong-Pyo;Park, Sun-Young;Han, Ki-In;Noh, Min-Sun
    • Journal of Technology Innovation
    • /
    • v.17 no.2
    • /
    • pp.1-23
    • /
    • 2009
  • The Survey on the Industrial Research and Development(R&D) is the primary source of information on R&D performed by Korea industrial sector. The results of the survey are used to assess trends in R&D expenditures. Government agencies, corporations, and research organizations use the data to investigate productivity determinants, formulate tax policy, and compare individual company performance with industry averages. Recently, Korea Industrial Technology Association(KOITA) has collected the data by complete enumeration. Koita has, currently, considered sample survey because the number of R&D institutions in industry has been dramatically increased. This study develops survey design for the industrial research and development(R&D) statistics by introducing a sample survey. Companies are divided into 8 groups according to the amount of R&D expenditures and firm size or type. We collect the sample from 24 or 8 sampling strata and compare the results with those of complete enumeration survey. The estimates from 24 sampling strata are not significantly different to the results of complete enumeration survey. We propose the survey design as follows: Companies are divided into 11 groups including the companies of which R&D expenditures are unknown. All large companies are included in the survey and medium and small companies are sampled from 70% and 3%. Simple random sampling (SRS) is applied to the small company partition since they show uniform distribution in R&D expenditures. The independent probability proportionate to size (PPS) sampling procedure may be applied to those companies identified as 'not R&D performers'. When respondents do not provide the requested information, estimates for the missing data are made using imputation algorithms. In the future study, new key variables should be developed in survey questionnaires.

  • PDF