• 제목/요약/키워드: Random model

검색결과 3,737건 처리시간 0.033초

변량계수모형의 식이요법 실험자료에 관한 사례연구 (A case study on the random coefficient model for diet experimental data)

  • 조진남;백재욱
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권5호
    • /
    • pp.787-796
    • /
    • 2009
  • 이 논문에서는 반복측정치에 대한 분석모형 중, 혼합모형의 일종인 변량계수모형에 대하여 이론적으로 고찰한다. 특히 혼합모형의 설정, 모수 추정에 대하여 통계적으로 고찰하고 변량계수모형에 대한 가능한 모형을 열거하며, 그에 따르는 추정과 검정을 논의한다. 사례연구로 식이요법자료를 대상으로 가능한 변량계수모형을 적용하여 추정 및 검정을 실시한 결과, 고정인자인 사전값, 처리, 키 및 시간들의 인자는 체중감소에 대단히 유의함을 보여주었지만, 나이와 혈압은 유의하지 않았다. 처리효과에 있어서는 식이요법과 운동을 병행했을 때의 처리가 식이요법만 실시했을 때의 처리보다 체중이 더 감소했음을 알 수 있으며, 시간에 따른 체중감소의 효과는 삼차함수의 관계가 성립된다. 변량인자로는 개체효과는 유의하며 개체별 시간에 대한 교호작용의 효과는 차수가 높아질수록 급속도로 감소하여 3차 함수 관계가 적절한 모형으로 최종 선택되었다.

  • PDF

사례 선택 기법을 활용한 앙상블 모형의 성능 개선 (Improving an Ensemble Model Using Instance Selection Method)

  • 민성환
    • 산업경영시스템학회지
    • /
    • 제39권1호
    • /
    • pp.105-115
    • /
    • 2016
  • Ensemble classification involves combining individually trained classifiers to yield more accurate prediction, compared with individual models. Ensemble techniques are very useful for improving the generalization ability of classifiers. The random subspace ensemble technique is a simple but effective method for constructing ensemble classifiers; it involves randomly drawing some of the features from each classifier in the ensemble. The instance selection technique involves selecting critical instances while deleting and removing irrelevant and noisy instances from the original dataset. The instance selection and random subspace methods are both well known in the field of data mining and have proven to be very effective in many applications. However, few studies have focused on integrating the instance selection and random subspace methods. Therefore, this study proposed a new hybrid ensemble model that integrates instance selection and random subspace techniques using genetic algorithms (GAs) to improve the performance of a random subspace ensemble model. GAs are used to select optimal (or near optimal) instances, which are used as input data for the random subspace ensemble model. The proposed model was applied to both Kaggle credit data and corporate credit data, and the results were compared with those of other models to investigate performance in terms of classification accuracy, levels of diversity, and average classification rates of base classifiers in the ensemble. The experimental results demonstrated that the proposed model outperformed other models including the single model, the instance selection model, and the original random subspace ensemble model.

Random Walk Model을 활용한 우면산 토석류 거동 분석 (Umyeon Mountain Debris Flow Movement Analysis Using Random Walk Model)

  • 김기홍;원상연;모세환
    • 한국측량학회지
    • /
    • 제32권5호
    • /
    • pp.515-525
    • /
    • 2014
  • 최근 기후변화로 인한 집중호우와 태풍의 증가로 산사태 및 토석류와 같은 산지토사재해가 급증하고 있다. 산지토사재해는 자연사면에서 발생하는 산사태와 토석류를 말한다. 넓은 지역에 대하여 토석류 피해범위를 예측하기 위해서는 물리적 기반의 수치해석보다는 Random Walk Model과 같은 응답모델이 적절하다. Random Walk Model은 계산방법이 간단하고 넓은 지역을 대상으로 토석류의 유동 및 퇴적 특성을 경사도의 인자로 단순화한 확률 모델이다. Random Walk Model을 이용하여 토석류 피해범위 예측을 할 수 있지만 이 모델을 적용하기 위해서는 지형조건에 맞는 초기 입력변수가 결정되어야한다. 본 연구에서는 2011년 대규모 토석류가 발생한 서울시 우면산 지역을 대상으로 현장조사 자료와 항공사진, 항공라이다 자료로부터 생성된 토석류 발생 전 후 수치표고모형의 육안판독을 통해 토석류 발생부와 퇴적부를 추출하여 Random Walk Model의 최적 변수를 산정하였다.

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models

  • Oh, S.-H.;See, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권7호
    • /
    • pp.923-927
    • /
    • 2008
  • The objective of this study was to compare random regression model and multiple trait animal model estimates of the (co) variance of total sperm cells over the active lifetime of AI boars. Data were provided by Smithfield Premium Genetics (Rose Hill, NC). Total number of records and animals for the random regression model were 19,629 and 1,736, respectively. Data for multiple trait animal model analyses were edited to include only records produced at 9, 12, 15, 18, 21, 24, and 27 months of age. For the multiple trait method estimates of genetic and residual variance for total sperm cells were heterogeneous among age classifications. When comparing multiple trait method to random regression, heritability estimates were similar except for total sperm cells at 24 months of age. The multiple trait method also resulted in higher estimates of heritability of total sperm cells at every age when compared to random regression results. Random regression analysis provided more detail with regard to changes of variance components with age. Random regression methods are the most appropriate to analyze semen traits as they are longitudinal data measured over the lifetime of boars.

임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발 (The Development of Biomass Model for Pinus densiflora in Chungnam Region Using Random Effect)

  • 표정기;손영모
    • 한국산림과학회지
    • /
    • 제106권2호
    • /
    • pp.213-218
    • /
    • 2017
  • 본 연구의 목적은 임의효과(random effect)를 이용하여 충남지역 임령-바이오매스 모형을 개발하고 임의효과의 적용성을 평가하는데 있다. 충남지역 소나무림의 임령에 따른 바이오매스 모형 개발을 위해 임분 구조를 고려하여 전국의 중부지방소나무 임분에서 30개소(150그루)를 조사하고 임령과 바이오매스 자료를 수집하였다. 모형 개발에서 중부지방소나무의 임령-바이오매스 관계는 고정효과(fixed effect)이고 지역간 차이를 임의효과로 설정하였다. 임의효과에 따른 모형의 적합도를 검정하기 위해 아카이케의 정보기준(Akaike Information Criterion, AIC)을 참고하고 지역간 차이에 따른 분산-공분산 행렬과 오차항을 추정하였다. 추정된 공분산은 -1.0022, 오차항은 0.6240이고 분산-공분산 행렬을 이용한 임의효과 모형의 AIC는 377.7을 나타내어 선행 연구와 이질적인 차이는 없었다. 이러한 결과는 범주형 자료의 임의효과가 모형 개발에 반영된 결과로 판단된다. 본 연구의 결과는 임의효과를 이용하여 일부지역에 국한되어 개발되었던 바이오매스 모형 연구에 활용이 가능하다.

Joint Modeling of Death Times and Counts Using a Random Effects Model

  • Park, Hee-Chang;Klein, John P.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권4호
    • /
    • pp.1017-1026
    • /
    • 2005
  • We consider the problem of modeling count data where the observation period is determined by the survival time of the individual under study. We assume random effects or frailty model to allow for a possible association between the death times and the counts. We assume that, given a random effect, the death times follow a Weibull distribution with a rate that depends on some covariates. For the counts, given the random effect, a Poisson process is assumed with the intensity depending on time and the covariates. A gamma model is assumed for the random effect. Maximum likelihood estimators of the model parameters are obtained. The model is applied to data set of patients with breast cancer who received a bone marrow transplant. A model for the time to death and the number of supportive transfusions a patient received is constructed and consequences of the model are examined.

  • PDF

Random Effects Tobit 회귀모형을 이용한 교차로 교통사고 요인 분석 (An Analysis on Vehicle Accident Factors of Intersections using Random Effects Tobit Regression Model)

  • 이상혁;이정범
    • 한국ITS학회 논문지
    • /
    • 제16권1호
    • /
    • pp.26-37
    • /
    • 2017
  • 본 연구는 random effects Tobit 회귀모형을 이용하여 도심지 교차로에 대한 교통사고모형을 개발하여 교통사고와 요인간의 상관관계를 파악하는 것이 목적이다. Random effects Tobit 회귀모형의 적용성을 비교 분석하기 위하여 fixed effect Tobit 회귀모형을 산정하였다. 산정결과, 교통량, 제한속도, 차로수, 토지이용, 우회전차로, 전방신호등이 유효한 변수로 나타났으며, 총 교통사고율에 대한 random effects 모형의 모형 적합도(결정계수: 0.418, 로그-우도함수값: -3210.103, 우도비: 0.056)와 모형 설명력(MAD: 19.533, MAPE: 75.725, RMSE: 26.886)은 fixed effects 모형의 모형 적합도 (결정계수: 0.298, 로그-우도함수값: -3276.138, 우도비: 0.037)와 모형 설명력(MAD: 20.725, MAPE: 82.473, RMSE: 27.267)보다 우수한 것으로 나타났으며, 부상교통사고율에 대한 교통사고모형에서도 총 교통사고율의 산정결과와 동일하게 나타나 두 모형에서 random effects Tobit 회귀모형이 다소 우수한 것으로 분석되었다.

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제25권4호
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

유전자 알고리즘 기반 통합 앙상블 모형 (Genetic Algorithm based Hybrid Ensemble Model)

  • 민성환
    • Journal of Information Technology Applications and Management
    • /
    • 제23권1호
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.