• Title/Summary/Keyword: Random Model

Search Result 3,752, Processing Time 0.034 seconds

A case study on the random coefficient model for diet experimental data (변량계수모형의 식이요법 실험자료에 관한 사례연구)

  • Jo, Jin-Nam;Baik, Jai-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.787-796
    • /
    • 2009
  • A random coefficient model is applied when times of the repeated measurements are not fixed in experiments with respect to the subjects. The procedures of the inference of a random coefficient model are same as those of a mixed model. Diet experimental data was used for applying the random coefficient model. Various random coefficient models are investigated for the experimental data, and are compared each other. Finally, optimal random coefficient model would be selected. It resulted from the analysis that for the fixed effect factor, the baseline, treatment, height, and time effect were very significant. The treatment effect of the diet foods and exercises were more effective in losing weight than the effect of the diet foods only. The fixed cubic time effect was very significant. The variance components corresponding to the subject effect, linear time effect, quadratic time effect, and cubic time effect of the random coefficients are all positive. When quartic time effect was added as random coefficients the model did not converge. Thus random coefficients up to the cubic terms was considered as the optimal model.

  • PDF

Improving an Ensemble Model Using Instance Selection Method (사례 선택 기법을 활용한 앙상블 모형의 성능 개선)

  • Min, Sung-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-115
    • /
    • 2016
  • Ensemble classification involves combining individually trained classifiers to yield more accurate prediction, compared with individual models. Ensemble techniques are very useful for improving the generalization ability of classifiers. The random subspace ensemble technique is a simple but effective method for constructing ensemble classifiers; it involves randomly drawing some of the features from each classifier in the ensemble. The instance selection technique involves selecting critical instances while deleting and removing irrelevant and noisy instances from the original dataset. The instance selection and random subspace methods are both well known in the field of data mining and have proven to be very effective in many applications. However, few studies have focused on integrating the instance selection and random subspace methods. Therefore, this study proposed a new hybrid ensemble model that integrates instance selection and random subspace techniques using genetic algorithms (GAs) to improve the performance of a random subspace ensemble model. GAs are used to select optimal (or near optimal) instances, which are used as input data for the random subspace ensemble model. The proposed model was applied to both Kaggle credit data and corporate credit data, and the results were compared with those of other models to investigate performance in terms of classification accuracy, levels of diversity, and average classification rates of base classifiers in the ensemble. The experimental results demonstrated that the proposed model outperformed other models including the single model, the instance selection model, and the original random subspace ensemble model.

Umyeon Mountain Debris Flow Movement Analysis Using Random Walk Model (Random Walk Model을 활용한 우면산 토석류 거동 분석)

  • Kim, Gihong;Won, Sangyeon;Mo, Sehwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.515-525
    • /
    • 2014
  • Recently, because of increasing in downpour and typhoon, which are caused by climate changes, those sedimentation disasters, such as landslide and debris flow, have become frequent. Those sedimentation disasters take place in natural slope. In order to predict debris flow damage range within wide area, the response model is more appropriate than numerical analysis. However, to make a prediction using Random Walk Model, the regional parameters is needed to be decided, since the regional environments conditions are not always same. This random Walk Model is a probability model with easy calculation method, and simplified slope factor. The objective of this study is to calculate the optimal parameters of Random Walk Model for Umyeon mountain in Seoul, where the large debris flow has occurred in 2011. Debris flow initiation zones and sedimentation zones were extracted through field survey, aerial photograph and visual reading of debris flow before and after its occurrence via LiDAR DEM.

A damage mechanics based random-aggregate mesoscale model for concrete fracture and size effect analysis

  • Ni Zhen;Xudong Qian
    • Computers and Concrete
    • /
    • v.33 no.2
    • /
    • pp.147-162
    • /
    • 2024
  • This study presents a random-aggregate mesoscale model integrating the random distribution of the coarse aggerates and the damage mechanics of the mortar and interfacial transition zone (ITZ). This mesoscale model can generate the random distribution of the coarse aggregates according to the prescribed particle size distribution which enables the automation of the current methodology with different coarse aggregates' distribution. The main innovation of this work is to propose the "correction factor" to eliminate the dimensionally dependent mesh sensitivity of the concrete damaged plasticity (CDP) model. After implementing the correction factor through the user-defined subroutine in the randomly meshed mesoscale model, the predicted fracture resistance is in good agreement with the average experimental results of a series of geometrically similar single-edge-notched beams (SENB) concrete specimens. The simulated cracking pattern is also more realistic than the conventional concrete material models. The proposed random-aggregate mesoscale model hence demonstrates its validity in the application of concrete fracture failure and statistical size effect analysis.

Comparison of Genetic Parameter Estimates of Total Sperm Cells of Boars between Random Regression and Multiple Trait Animal Models

  • Oh, S.-H.;See, M.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.7
    • /
    • pp.923-927
    • /
    • 2008
  • The objective of this study was to compare random regression model and multiple trait animal model estimates of the (co) variance of total sperm cells over the active lifetime of AI boars. Data were provided by Smithfield Premium Genetics (Rose Hill, NC). Total number of records and animals for the random regression model were 19,629 and 1,736, respectively. Data for multiple trait animal model analyses were edited to include only records produced at 9, 12, 15, 18, 21, 24, and 27 months of age. For the multiple trait method estimates of genetic and residual variance for total sperm cells were heterogeneous among age classifications. When comparing multiple trait method to random regression, heritability estimates were similar except for total sperm cells at 24 months of age. The multiple trait method also resulted in higher estimates of heritability of total sperm cells at every age when compared to random regression results. Random regression analysis provided more detail with regard to changes of variance components with age. Random regression methods are the most appropriate to analyze semen traits as they are longitudinal data measured over the lifetime of boars.

The Development of Biomass Model for Pinus densiflora in Chungnam Region Using Random Effect (임의효과를 이용한 충남지역 소나무림의 바이오매스 모형 개발)

  • Pyo, Jungkee;Son, Yeong Mo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.2
    • /
    • pp.213-218
    • /
    • 2017
  • The purpose of this study was to develop age-biomass model in Chungnam region containing random effect. To develop the biomass model by species and tree component, data for Pinus densiflora in central region is collected to 30 plots (150 trees). The mixed model were used to fixed effect in the age-biomass relation for Pinus densiflora, with random effect representing correlation of survey area were obtained. To verify the evaluation of the model for random effect, the akaike information criterion (abbreviated as, AIC) was used to calculate the variance-covariance matrix, and residual of repeated data. The estimated variance-covariance matrix, and residual were -1.0022, 0.6240, respectively. The model with random effect (AIC=377.2) has low AIC value, comparison with other study relating to random effects. It is for this reason that random effect associated with categorical data were used in the data fitting process, the model can be calibrated to fit the Chungnam region by obtaining measurements. Therefore, the results of this study could be useful method for developing biomass model using random effects by region.

Joint Modeling of Death Times and Counts Using a Random Effects Model

  • Park, Hee-Chang;Klein, John P.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1017-1026
    • /
    • 2005
  • We consider the problem of modeling count data where the observation period is determined by the survival time of the individual under study. We assume random effects or frailty model to allow for a possible association between the death times and the counts. We assume that, given a random effect, the death times follow a Weibull distribution with a rate that depends on some covariates. For the counts, given the random effect, a Poisson process is assumed with the intensity depending on time and the covariates. A gamma model is assumed for the random effect. Maximum likelihood estimators of the model parameters are obtained. The model is applied to data set of patients with breast cancer who received a bone marrow transplant. A model for the time to death and the number of supportive transfusions a patient received is constructed and consequences of the model are examined.

  • PDF

An Analysis on Vehicle Accident Factors of Intersections using Random Effects Tobit Regression Model (Random Effects Tobit 회귀모형을 이용한 교차로 교통사고 요인 분석)

  • Lee, Sang Hyuk;Lee, Jung-Beom
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.26-37
    • /
    • 2017
  • The study is to develop safety performance functions(SPFs) for urban intersections using random effects Tobit regression model and to analyze correlations between crashes and factors. Also fixed effects Tobit regression model was estimated to compare and analyze model validation with random effects model. As a result, AADT, speed limits, number of lanes, land usage, exclusive right turn lanes and front traffic signal were found to be significant. For comparing statistical significance between random and fixed effects model, random effects Tobit regression model of total crash rate could be better statistical significance with $R^2_p$ : 0.418, log-likelihood at convergence: -3210.103, ${\rho}^2$: 0.056, MAD: 19.533, MAPE: 75.725, RMSE: 26.886 comparing with $R^2_p$ : 0.298, log-likelihood at convergence: -3276.138, ${\rho}^2$: 0.037, MAD: 20.725, MAPE: 82.473, RMSE: 27.267 for the fixed model. Also random effects Tobit regression model of injury crash rate has similar results of model statistical significant with random effects Tobit regression model.

Estimation of Random Coefficient AR(1) Model for Panel Data

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.529-544
    • /
    • 1996
  • This paper deals with the problem of estimating the autoregressive random coefficient of a first-order random coefficient autoregressive time series model applied to panel data of time series. The autoregressive random coefficients across individual units are assumed to be a random sample from a truncated normal distribution with the space (-1, 1) for stationarity. The estimates of random coefficients are obtained by an empirical Bayes procedure using the estimates of model parameters. Also, a Monte Carlo study is conducted to support the estimation procedure proposed in this paper. Finally, we apply our results to the economic panel data in Liu and Tiao(1980).

  • PDF

Genetic Algorithm based Hybrid Ensemble Model (유전자 알고리즘 기반 통합 앙상블 모형)

  • Min, Sung-Hwan
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • An ensemble classifier is a method that combines output of multiple classifiers. It has been widely accepted that ensemble classifiers can improve the prediction accuracy. Recently, ensemble techniques have been successfully applied to the bankruptcy prediction. Bagging and random subspace are the most popular ensemble techniques. Bagging and random subspace have proved to be very effective in improving the generalization ability respectively. However, there are few studies which have focused on the integration of bagging and random subspace. In this study, we proposed a new hybrid ensemble model to integrate bagging and random subspace method using genetic algorithm for improving the performance of the model. The proposed model is applied to the bankruptcy prediction for Korean companies and compared with other models in this study. The experimental results showed that the proposed model performs better than the other models such as the single classifier, the original ensemble model and the simple hybrid model.