Ricardo Costa Sousa;Fernando dos Santos Magaco;Daiane Cristina Becker Scalez;Jose Elivalto Guimaraes Campelo;Clelia Soares de Assis;Idalmo Garcia Pereira
Animal Bioscience
/
제37권5호
/
pp.817-825
/
2024
Objective: The aim of this study was to identify suitable polynomial regression for modeling the average growth trajectory and to estimate the relative development of the rib eye area, scrotal circumference, and morphometric measurements of Guzerat young bulls. Methods: A total of 45 recently weaned males, aged 325.8±28.0 days and weighing 219.9±38.05 kg, were evaluated. The animals were kept on Brachiaria brizantha pastures, received multiple supplementations, and were managed under uniform conditions for 294 days, with evaluations conducted every 56 days. The average growth trajectory was adjusted using ordinary polynomials, Legendre polynomials, and quadratic B-splines. The coefficient of determination, mean absolute deviation, mean square error, the value of the restricted likelihood function, Akaike information criteria, and consistent Akaike information criteria were applied to assess the quality of the fits. For the study of allometric growth, the power model was applied. Results: Ordinary polynomial and Legendre polynomial models of the fifth order provided the best fits. B-splines yielded the best fits in comparing models with the same number of parameters. Based on the restricted likelihood function, Akaike's information criterion, and consistent Akaike's information criterion, the B-splines model with six intervals described the growth trajectory of evaluated animals more smoothly and consistently. In the study of allometric growth, the evaluated traits exhibited negative heterogeneity (b<1) relative to the animals' weight (p<0.01), indicating the precocity of Guzerat cattle for weight gain on pasture. Conclusion: Complementary studies of growth trajectory and allometry can help identify when an animal's weight changes and thus assist in decision-making regarding management practices, nutritional requirements, and genetic selection strategies to optimize growth and animal performance.
Purpose: The injection molding process, crucial for plastic shaping, encounters difficulties in sustaining product quality when replacing injection machines. Variations in machine types and outputs between different production lines or factories increase the risk of quality deterioration. In response, the study aims to develop a system that optimally adjusts conditions during the replacement of injection machines linked to molds. Methods: Utilizing a dataset of 12 injection process variables and 52 corresponding sensor variables, a predictive model is crafted using Decision Tree, Random Forest, and XGBoost. Model evaluation is conducted using an 80% training data and a 20% test data split. The dependent variable, classified into five characteristics based on temperature and pressure, guides the prediction model. Bayesian optimization, integrated into the selected model, determines optimal values for process variables during the replacement of injection machines. The iterative convergence of sensor prediction values to the optimum range is visually confirmed, aligning them with the target range. Experimental results validate the proposed approach. Results: Post-experiment analysis indicates the superiority of the XGBoost model across all five characteristics, achieving a combined high performance of 0.81 and a Mean Absolute Error (MAE) of 0.77. The study introduces a method for optimizing initial conditions in the injection process during machine replacement, utilizing Bayesian optimization. This streamlined approach reduces both time and costs, thereby enhancing process efficiency. Conclusion: This research contributes practical insights to the optimization literature, offering valuable guidance for industries seeking streamlined and cost-effective methods for machine replacement in injection molding.
The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.
Olha I. Dienichieva;Maryna I. Komogorova;Svitlana F. Lukianchuk;Liudmyla I. Teletska;Inna M. Yankovska
International Journal of Computer Science & Network Security
/
제24권7호
/
pp.148-156
/
2024
The research paper presents the results of an experimental research of the development of critical thinking in third-year students majoring in 013 "Primary Education" in studying a special course "From Reflection to Self-Assessment: Critical Thinking Skills" (based on Lauren Starkey methodology). The research was conducted during the first half of 2019-2020 academic year. The sample representativeness was ensured by the method of random selection, the strategy of randomization according to the criteria of age, gender, level of academic performance was described. Given the confidence interval p=95% and the confidence interval of the error Δ=±0.05, the sample size was 94 people, including of the experimental group and 49 students of the control group. The peculiarities of the development of such critical thinking skills as reflective thinking, self-analysis, awareness of one's own achievements and shortcomings, choice of problem-solving strategy, use of cognitive models of learning are revealed. It was found that the development of critical thinking was achieved through a comprehensive combination of self-assessment and reflection, performing exercises to develop the ability to clearly articulate the problem, find, analyse and interpret relevant information, draw the right conclusions and explanations.
다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 또한, 대응점을 이용한 RANSAC(RANdom SAmple Consensus) 알고리즘을 사용, Homography Matrix를 구하여 영상을 변환하는 방법을 사용한다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. SURF 알고리즘은 대응점 검출 시 잘못된 대응점을 검출하는 경우가 생긴다는 단점이 존재하는데 이는 RANSAC 알고리즘의 수행속도를 늦추며, 그로인해 CPU 사용 점유율을 높이기도 한다. 대응점 검출 오류는 파노라마 영상의 정확성 및 선명성을 떨어뜨리는 핵심 요인이 된다. 본 논문에서는 이러한 대응점 검출의 오류를 최소화하기 위하여 대응점 좌표 주변 $3{\times}3$ 영역의 RGB값을 사용하여 잘못된 대응점들을 제거하는 중간 필터링 과정을 수행하고, 문제해결을 시도하는 동시에 파노라마 이미지구성 처리 속도 및 CPU 사용 점유율 등의 성능 향상 결과와 추출된 대응점 감소율, 정확도 등과 관련한 분석 및 평가 결과를 제시하였다.
이산화황(SO2)은 대기 중 화학 반응을 통해 2차 대기오염물질을 생성하는 전구체로, 주로 산업활동이나 주거 및 교통 활동 등을 통해 배출된다. 장기간 노출 시 호흡기 질환이나 심혈관 질환 등을 유발하여 인체 건강에 부정적인 영향을 미칠 수 있기 때문에 이에 대한 지속적인 모니터링이 필요하다. 우리나라에서는 SO2에 대해 관측소 기반의 모니터링이 수행되고 있으나 이는 공간적으로 연속적인 정보를 제공하는 데에 한계가 있다. 따라서, 본 연구에서는 위성자료와 수치모델 자료를 융합하여 일별 13시를 타겟으로 하는 1 km의 고해상도로 공간적으로 연속적인 SO2 지상농도를 산출하였다. 2015년 1월부터 2019년 4월까지의 기간 동안 남한 지역에 대하여 스태킹 앙상블 기법을 이용하여 SO2 지상농도 추정 모델을 개발하였다. 스태킹 앙상블 기법이란 여러가지 기계학습 기법을 두 단계로 쌓는 방식으로 융합하여 단일 모델 대비 더 향상된 성능을 도출하는 방법이다. 본 연구에서는 베이스 모델로는 RF (Random Forest)와 XGB (eXtreme Gradient BOOSTing) 기법이, 메타 모델로는 MLR (Multiple Linear Regression) 기법이 사용되었다. 구축된 모델의 교차검증 결과 메타 모델은 상관계수(R) = 0.69와 root-mean-squared-error(RMSE) = 0.0032 ppm의 결과를 보였으며 이는 베이스 모델의 평균 대비 약 25% 향상된 안정성을 보였다. 또한 모델 구축에 사용되지 않은 기간에 대한 예측 검증을 수행하여 모델의 일반화 가능성을 평가하였다. 구축된 모델을 이용하여 남한 지역의 SO2 지상농도 공간분포를 분석한 결과 일반적인 계절성과 배출원의 변화를 잘 반영하는 패턴을 보임을 확인하였다.
Forel-Ule Index (FUI)는 자연에 존재하는 담수 및 해수의 색을 남색부터 고동색까지 21 가지의 등급으로 구분하는 지표이다. FUI는 여러 선행연구에서 수계의 부영양화 지수, 수질인자, 광 특성 등과 연관 지어 분석되었으며, 여러 수질인자의 광학적 정보를 동시에 가지고 있는 새로운 수질 지표로써의 가능성이 제시되었다. 본 연구에서는 500 m의 높은 공간해상도를 가지는 정지궤도 해양위성해색탑재체(Geostationary Ocean Color Imager; GOCI) 관측 자료와 Random Forest (RF) 기계학습 기법을 활용하여 Ocean Colour-Climate Change Initiative(OC-CCI) 기반의 4 km FUI 자료를 공간 상세화 시켰다. 이를 활용하여 우리나라 연안 해역에 대한 수질인자와의 상관관계와 주요 해역에 대한 FUI의 공간적 분포 및 계절별 특성 변화를 분석하였다. 검증 결과 RF 기법으로 추정한 RF FUI는 결정계수(R2)=0.81, 평균 제곱근 오차(Root Mean Square Error; RMSE)=0.7784로, Pitarch의 OC-CCI FUI 알고리즘을 적용하여 계산한 GOCI FUI 추정 정확도(R2=0.72, RMSE=0.9708) 대비 향상된 결과를 보였다. RF FUI는 총 질소(Total Nitrogen), 총 인(Total Phosphorus), 클로로필-a(Chlorophyll-a), 총 부유물질(Total Suspended Solids), 투명도(Secchi Disk Depth)를 포함하는 5가지 수질인자와 각각 0.87, 0.88, 0.97, 0.65, -0.98의 상관계수로 강한 상관성을 보였다. 산출된 FUI의 시간적 패턴 역시 여러 수질인자와의 물리적 관계를 반영하며 유의미한 계절적 패턴의 변화를 보였다. 본 연구의 결과로 한반도 연안 수질 관리에서 고해상도 FUI의 활용 가능성을 제시하였다.
산림생태계에서 총일차생산성(Gross Primary Production, GPP)은 기후변화에 따른 산림의 생산성과 그에 영향을 미치는 식물계절, 건강성, 탄소 순환 등을 대표하는 지표이다. 총일차생산성을 추정하기 위해서는 에디공분산 타워 자료나 위성영상관측자료를 이용하기도 하고 물리지형적 한계나 기후변화 등을 고려하기 위해 기작기반모델링을 활용하기도 한다. 그러나 총일차생산성을 포함한 산림 탄소 순환의 기작기반 모델링은 식물의 생물, 생리, 화학적 기작들의 반응과 지형, 기후 및 시간 등과 같은 환경 조건들이 복잡하게 얽혀 있어 비선형적이고 유연성이 떨어져 반응에 영향을 주는 조건들을 모두 적용하기가 어렵다. 본 연구에서는 산림 생산성 추정 모델을 에디공분산 자료와 인공위성영상 정보를 사용하여 기계학습 알고리즘을 사용한 모델들로 구축해 보고 그 사용 및 확장 가능성을 검토해 보고자 하였다. 설명변수들로는 에디공분산자료와 인공위성자료에서 나온 대기기상인자들을 사용하였고 검증자료로 에디공분산 타워에서 관측된 총일차생산성을 사용하였다. 산림생산성 추정 모델은 1) 에디공분산 관측 기온($T_{air}$), 태양복사($R_d$), 상대습도(RH), 강수(PPT), 증발산(ET) 자료, 2) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD 자료(개량식생지수 제외), 3) MODIS 관측 기온(T), 일사량($R_{sd}$), VPD, 개량식생지수(EVI) 자료를 사용하는 세 가지 경우로 나누어 구축하여 2006 - 2013년 자료로 훈련시키고 2014, 2015년 자료로 검증하였다. 기계학습 알고리즘은 support vector machine (SVM), random forest (RF), artificial neural network (ANN)를 사용하였고 단순 비교를 위해 고전적 방법인 multiple linear regression model (LM)을 사용하였다. 그 결과, 에디공분산 입력자료로 훈련시킨 모델의 예측력은 피어슨 상관계수 0.89 - 0.92 (MSE = 1.24 - 1.62), MODIS 입력자료로 훈련시킨 모델의 예측력은 개량식생지수 제외된 모델은 0.82 - 0.86 (MSE = 1.99 - 2.45), 개량식생지수가 포함된 모델은 0.92 - 0.93(MSE = 1.00 - 1.24)을 보였다. 이러한 결과는 산림총일차생산성 추정 모델 구축에 있어 MODIS인공위성 영상 정보 기반으로 기계학습 알고리즘을 사용하는 것에 대한 높은 활용가능성을 보여주었다.
목적: 오류발견율 조절법을 PET 영상분석에 이용하면 다중비교에 따르는 위양성율을 줄이면서 동시에 검정력을 높일 수 있다. 조기 알츠하이머 치매 환자에서 오류발견율 조절법을 적용하였을 때와 비보정역치, 무작위 가우스장 보정역치를 적용하였울 때 FDG PET에 나타난 포도당 대사 감소영역이 어떻게 달라지는지 조사하였다. 방법: 28명의 평균 66세 (${\pm}7$)인 조기 알츠하이머성 치매 환자와 연령을 맞춘 18명의 정상인($68{\pm}6$세)의 FDG PET 영상을 SPM99 소프트웨어로 분석하였다. 환자군과 정상군의 차이와 각 환자와 정상군의 차이를 각각 비보정 역치 p값 0.001, 무작위장 보정 역치 p값 0.001, 오류발견율 조절법에 의한 오류발견율 0.001일 때을 정하여 이 세 통계적 역치에서 각각 뇌 포도당 대사감소 영역을 결정하였다. 결과: 집단 분석결과 비보정 역치를 사용하였을 때 가장 넓은 영역에서, 보정역치를 사용하였을 때 가장 좁은 영역에서, 오류발견율 조절법을 적용하였을 때 중간크기의 영역에 대사가 감소하였다. 개인분석결과 비보정 역치 경우 발견된 대사감소 화소보다 오류발견율 조절시 많은 화소가 나타난 경우(8/28, 29%)와 보정 역치 경우와 오류발견율 조절시에는 대사감소 부위가 나타나지 않고 비보정 역치 경우에만 넓은 부위에 대사감소부위가 나타난 경우(6/28, 21%), 그리고 보정역치보다 오류 발견율 조절시에 훨씬 많은 화소가 이상부위로 나타나서 비보정역치 경우에 근접하는 넓이를 찾을 수 있는 경우(14/28 50%)이었다. 결론: 조기 알츠하이머 치매 환자의 FDG PET을 오류발견율 조절법으로 분석한 결과 집단분석이나 개인분석 모두 대사감소부위를 잘 찾을 수 있었다. 집단의 크기가 작은 환자의 집단분석이나 특히 개인분석의 경우 오류발견율 조절법을 이용하여 FDG PET을 분석하는 것이 좋을 것이라 제안한다.
대기 중 이산화질소(NO2)는 주로 인위적인 배출요인으로 발생하며 화학 반응을 통해 이차오염 물질 및 오존 형성에 매개 역할을 하는 인체 건강에 악영향을 미치는 물질이다. 우리나라는 지상 관측소에 의한 실시간 NO2 모니터링을 수행하고 있지만, 이는 점 기반의 관측 값으로써 미관측 지역의 공간 분포 분석이 어렵다는 한계점을 지닌다. 본 연구에서는 선형 회귀 기반 모델인 다중 선형 회귀와 회귀 크리깅, 기계학습 알고리즘인 Random Forest (RF), Support Vector Regression (SVR)을 적용한 공간 내삽 모델링을 통해 서울 지역의 지상 NO2 농도 지도를 제작하였고, 일별 Leave-One-Out Cross Validation (LOOCV) 교차 검증을 시행하였다. 2020년 연구기간 내 일별 LOOCV에서 MLR, RK, SVR 모델의 일별 평균 Index of agreement (IOA)는 약 0.57로 유사한 성능을 보였으며, RF (0.50)보다 높은 성능이 확인되었다. RK의 일별 평균 nRMSE는 0.9483%으로 MLR (0.9501%)보다 상대적으로 낮은 오차를 나타냈다. MLR과 RK, RF 모델의 계절별 공간 분포는 비슷한 양상을 보였으며, RF는 다른 모델에 비해 좁은 NO2 농도 범위가 확인되었다. 본 연구에서 제안된 선형 회귀 기반 공간 내삽은 지상 NO2 뿐 아니라 다른 대기 오염 물질의 도시 지역 공간 내삽을 위해 활용 가능성이 높을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.