• Title/Summary/Keyword: Random Cascade

Search Result 26, Processing Time 0.027 seconds

Establishment of Inundation Probability DB for Forecasting the Farmland Inundation Risk Using Weather Forecast Data (기상예보 기반 농촌유역 침수 위험도 예보를 위한 침수 확률 DB 구축)

  • Kim, Si-Nae;Jun, Sang-Min;Lee, Hyun-Ji;Hwang, Soon-Ho;Choi, Soon-Kun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.33-43
    • /
    • 2020
  • In order to reduce damage from farmland inundation caused by recent climate change, it is necessary to predict the risk of farmland inundation accurately. Inundation modeling should be performed by considering multiple time distributions of possible rainfalls, as digital forecasts of Korea Meteorological Administration is provided on a six-hour basis. As building multiple inputs and creating inundation models take a lot of time, it is necessary to shorten the forecast time by building a data base (DB) of farmland inundation probability. Therefore, the objective of this study is to establish a DB of farmland inundation probability in accordance with forecasted rainfalls. In this study, historical data of the digital forecasts was collected and used for time division. Inundation modeling was performed 100 times for each rainfall event. Time disaggregation of forecasted rainfall was performed by applying the Multiplicative Random Cascade (MRC) model, which uses consistency of fractal characteristics to six-hour rainfall data. To analyze the inundation of farmland, the river level was simulated using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). The level of farmland was calculated by applying a simulation technique based on the water balance equation. The inundation probability was calculated by extracting the number of inundation occurrences out of the total number of simulations, and the results were stored in the DB of farmland inundation probability. The results of this study can be used to quickly predict the risk of farmland inundation, and to prepare measures to reduce damage from inundation.

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

An Integrated Flood Simulation System for Upstream and Downstream of the Agricultural Reservoir Watershed (농촌 유역 저수지 상·하류 통합 홍수 모의 시스템 구축 및 적용)

  • Kwak, Jihye;Kim, Jihye;Lee, Hyunji;Lee, Junhyuk;Cho, Jaepil;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • To utilize the hydraulic and hydrological models when simulating floods in agricultural watersheds, it is necessary to consider agricultural reservoirs, farmland, and farmland drainage system, which are characteristics of agricultural watersheds. However, most of them are developed individually by different researchers, also, each model has a different simulation scope, so it is hard to use them integrally. As a result, there is a need to link each hydraulic and hydrological model. Therefore, this study established an integrated flood simulation system for the comprehensive flood simulation of agricultural reservoir watersheds. The system can be applied easily to various watersheds because historical weather data and the SSP (Shared Socio-economic Pathways) climate change scenario database of ninety weather stations were built-in. Individual hydraulic and hydrological models were coded and coupled through Python. The system consists of multiplicative random cascade model, Clark unit hydrograph model, frequency analysis model, HEC-5 (Hydrologic Engineering Center-5), HEC-RAS (Hydrologic Engineering Center-River Analysis System), and farmland drainage simulation model. In the case of external models with limitations in conceptualization, such as HEC-5 and HEC-RAS, the python interpreter approaches the operating system and gives commands to run the models. All models except two are built based on the logical concept.

Evaluation and analysis of future flood probabilities in rural watershed based on probability theory (확률론 기반 농촌 유역의 미래 홍수 확률 평가 및 분석)

  • Kwak, Jihye;Lee, Hyunji;Kim, Jihye;Jun, Sang Min;Kim, Seokhyeon;Kim, Sinae;Kang, Moon Seong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.187-187
    • /
    • 2022
  • 우리나라의 농촌 유역은 크게 1) 상류에 위치한 농업용 저수지, 2) 저수지 방류부, 3) 저수지 하류하천, 4) 하류 농업 지대로 구성된다. 이들 모두 유역의 홍수·침수와 연관되어 있으나 각각의 설계 빈도가 서로 달라 일시에 수용 가능한 수자원의 양이 상이하다. 예컨대 극한 강우가 발생한 경우 PMP를 고려하여 설계된 저수지에서는 유입 홍수량이 통제될 수 있으나 50-200년 빈도로 설계된 하류하천에서는 측면 유입량 때문에 홍수가 발생할 수 있다. 따라서 유역의 홍수 확률을 산출할 때에는 유역 구성지역별 홍수 확률을 산정한 후 종합적으로 고려할 필요가 있다. 특히 농촌유역의 경우 하류하천 및 농경지의 설계 빈도 기준이 도시에 비해 낮아 유역 구성요소 간 처리 가능한 수자원 양의 차이가 크다. 따라서 본 연구에서는 농촌 유역을 대상으로 연구를 진행하였다. 한편, 최근 기후변화로 인해 극한 강우 사상의 빈도가 잦아짐에 따라 유역 내 홍수의 발생이 증가하고 있다. 따라서 기후변화에 따른 미래 농촌 유역의 홍수 발생 여부 파악이 필수적이다. 이에 본 연구에서는 CMIP 6 (Coupled Model Intercomparison Project Phase 6)의 GCM (General Circulation Model) 기상산출물을 농촌 유역에 적용함으로써 미래 농촌 유역의 홍수 발생 여부를 확인하고자 하였다. 또한, CMIP 6의 GCM 산출 기상자료의 시간 단위는 24시간 혹은 3시간으로 시간적 해상도가 낮으므로 유역 홍수 모의를 위하여 GCM 산출물의 시간 분해를 수행하였다. 본 연구에서는 MRC (Multiplicative Random Cascade) 모형을 기후변화 시나리오 기상자료에 적용함으로써 강우 자료의 시간 분해를 수행하고, 시간 분해 결과물을 활용하여 농촌 유역의 미래 홍수 확률을 산정해보고자 하였다. 본 연구의 결과는 향후 농촌 유역의 홍수 확률 산정 기법에 관한 기초 자료로 활용될 수 있을 것으로 사료된다.

  • PDF

Assessment of Future Climate and Land Use Change on Hydrology and Stream Water Quality of Anseongcheon Watershed Using SWAT Model (II) (SWAT 모형을 이용한 미래 기후변화 및 토지이용 변화에 따른 안성천 유역 수문 - 수질 변화 분석 (II))

  • Lee, Yong Jun;An, So Ra;Kang, Boosik;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.665-673
    • /
    • 2008
  • This study is to assess the future potential climate and land use change impact on streamflow and stream water quality of the study watershed using the established model parameters (I). The CCCma (Canadian Centre for Climate Modelling and Analysis) CGCM2 (Canadian Global Coupled Model) based on IPCC SRES (Special Report Emission Scenarios) A2 and B2 scenarios were adopted for future climate condition, and the data were downscaled by Stochastic Spatio-Temporal Random Cascade Model technique. The future land use condition was predicted by using modified CA-Markov (Cellular Automata-Markov chain) technique with the past time series of Landsat satellite images. The model was applied for the future extreme precipitation cases of around 2030, 2060 and 2090. The predicted results showed that the runoff ratio increased 8% based on the 2005 precipitation (1160.1 mm) and runoff ratio (65%). Accordingly the Sediment, T-N and T-P also increased 120%, 16% and 10% respectively for the case of 50% precipitation increase. This research has the meaning in providing the methodological procedures for the evaluation of future potential climate and land use changes on watershed hydrology and stream water quality. This model result are expected to plan in advance for healthy and sustainable watershed management and countermeasures of climate change.