• Title/Summary/Keyword: Ramberg-Osgood model

Search Result 35, Processing Time 0.018 seconds

Modeling of Stress-strain Curve for Cold Rolled Electrical Steel (냉간 압연된 전기강판의 응력-변형률 곡선 모델)

  • Yoo, U.K.;Byon, S.M.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.4
    • /
    • pp.272-277
    • /
    • 2008
  • A constitutive equation of the electrical steel strip used for a raw material of transformer is proposed. The stress-strain behavior of electrical steel strip is quite different from that of common carbon steel and/or alloy steel. A series of tensile tests were performed with the specimens made from cold rolled strip. Several thicknesses of the strip were produced by a two-high (with upper and lower rolls) cold rolling pilot mill as reduction ratio increases from 10% to 90%. Its initial thickness of the strip was 2.5mm. Tensile specimens are cut out from the cold rolled strips. Mechanical properties of the steel are examined through rolling direction. Ramberg-Osgood model and the proposed equation are combined to describe the total behavior of stress-strain including instability region. The stress-strain curves calculated from the present constitutive equation are compared with those from experimentally obtained at each test condition of reduction ratios of specimen. Results show that the predicted stress-strain curves are in overall in a good agreement with measured ones.

Whole learning algorithm of the neural network for modeling nonlinear and dynamic behavior of RC members

  • Satoh, Kayo;Yoshikawa, Nobuhiro;Nakano, Yoshiaki;Yang, Won-Jik
    • Structural Engineering and Mechanics
    • /
    • v.12 no.5
    • /
    • pp.527-540
    • /
    • 2001
  • A new sort of learning algorithm named whole learning algorithm is proposed to simulate the nonlinear and dynamic behavior of RC members for the estimation of structural integrity. A mathematical technique to solve the multi-objective optimization problem is applied for the learning of the feedforward neural network, which is formulated so as to minimize the Euclidean norm of the error vector defined as the difference between the outputs and the target values for all the learning data sets. The change of the outputs is approximated in the first-order with respect to the amount of weight modification of the network. The governing equation for weight modification to make the error vector null is constituted with the consideration of the approximated outputs for all the learning data sets. The solution is neatly determined by means of the Moore-Penrose generalized inverse after summarization of the governing equation into the linear simultaneous equations with a rectangular matrix of coefficients. The learning efficiency of the proposed algorithm from the viewpoint of computational cost is verified in three types of problems to learn the truth table for exclusive or, the stress-strain relationship described by the Ramberg-Osgood model and the nonlinear and dynamic behavior of RC members observed under an earthquake.

Proposed New Evaluation Method of the Site Coefficients Considering the Effects of the Structure-Soil Interaction (구조물-지반 상호작용 영향을 고려한 새로운 지반계수 평가방법에 대한 제안)

  • Kim, Yong-Seok
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.327-336
    • /
    • 2006
  • Site coefficients in IBC and KBC codes have some limits to predict the rational seismic responses of a structure, because they consider only the effect of the soil amplification without the effects of the structure-soil interaction. In this study, upper and lower limits of site coefficients are estimated through the pseudo 3-D elastic seismic response analyses of structures built on linear or nonlinear soil layers considering the structure-soil interaction effects. Soil characteristics of site classes of A, B, and C were assumed to be linear, and those of site classes of D and E were done to be nonlinear and the Ramberg-Osgood model was used to evaluate shear modulus and damping ratio of a soil layer depending on the shear wave velocity of a soil layer. Seismic analyses were performed with 12 weak or moderate earthquake records, scaled the peak acceleration to 0.1g or 0.2g and deconvoluted as earthquake records at the bedrock 30m beneath the outcrop. With the study results of the elastic seismic response analyses of structures, new standard response spectrum and upper and lower limits of the site coefficients of Fa and Fv at the short period range and the period of 1 second are suggested Including the structure-soil interaction effects.

  • PDF

Identifying Strain Associated with Damping Ratio from Tosional Test Using a Combined Damping Model (복합감쇠모델을 이용한 비틂 시험기로 얻은 감쇠비에 상응하는 변형률 산정)

  • Bae, Yoon-Shin
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.43-55
    • /
    • 2008
  • The complexity of determining strain associated with shear modulus and damping ratio in torsional tests has been resolved by means of several approaches. Particularly, the modified equivalent radius approach is adequate to when generating the plots of equivalent radius ratio versus strain more effectively over any range of strains in resonant column and torsional shear (RC/TS) tests. The modified equivalent radius approach was applied for hyperbolic, modified hyperbolic, and Ramberg-Osgood models in evaluating damping ratio. Results showed that using a single value of equivalent radius ratio based on conventional equivalent radius approach is not appropriate. A new model was developed to consider the soil damping behavior at small strains as well as hysteretic damping and it was attempted to determine adjustments are required in evaluating strain associated damping when combining the two damping components.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.