• 제목/요약/키워드: Raman Spectroscopy

검색결과 1,152건 처리시간 0.03초

Magnetron PECVD에 의한 DLC 박막의 제작에 관한 연구 (A study on the deposition of DLC films by magnetron PECVD)

  • 김성영;이재성;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1446-1449
    • /
    • 1996
  • Thin films of diamond-like carbon(DLC) have been deposited using a magnetron plasma-enhanced chemical vapor deposition(PECVD) method with an rf(13.56 MHz) plasma of $C_{3}H_{8}$. From the Langmuir probe I-V characteristics, it can be observed that increasing the magnetic field yields an increase of the temperature($T_e$) and density($N_e$) of electron. At a magnetic field of 82 Gauss, the estimated values of $T_e$ and $N_e$ are approximately $1.5\;{\times}\;10^5$ K(13.5 eV) and $1.3\;{\times}\;10^{11}\;cm^{-3}$, respectively. Such a highly dense plasma can be attributed to the enhanced ionization caused by the cyclotron motion of electrons in the presence of a magnetic field. On the other hand, the negative dc self-bias voltage($-V_{sb}$) decreases with an increasing magnetic field, which is irrespective of gas pressure in the range of $1{\sim}7$ mTorr. This result is well explained by a theoretical model considering the variation of $T_e$. Deposition rates of DLC films increases with a magnetic field. This may be due to the increased mean free path of electrons in the magnetron plasma. Structures of DLC films are examined by using various techniques such as FTIR and Raman spectroscopy. Most of hydrocarbon bonds in DLC films prepared consist of $sp^3$ tetrahedral bonds. Increasing the rf power leads to an enhancement of cross-linking of carbon atoms in DLC films. At approximately 140 W, the maximum film density obtained is about 2.4 $g/cm^3$.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Tungsten Disulphide (WS2) Atomic Layer by Chemical Vapor Deposition

  • Kim, Ji Sun;Kim, Yooseok;Park, Seung-Ho;Ko, Yong Hun;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.361.2-361.2
    • /
    • 2014
  • Transition metal dichalcogenides (MoS2, WS2, WSe2, MoSe2, NbS2, NbSe2, etc.) are layered materials that can exhibit semiconducting, metallic and even superconducting behavior. In the bulk form, the semiconducting phases (MoS2, WS2, WSe2, MoSe2) have an indirect band gap. Recently, these layered systems have attracted a great deal of attention mainly due to their complementary electronic properties when compared to other two-dimensional materials, such as graphene (a semimetal) and boron nitride (an insulator). However, these bulk properties could be significantly modified when the system becomes mono-layered; the indirect band gap becomes direct. Such changes in the band structure when reducing the thickness of a WS2 film have important implications for the development of novel applications, such as valleytronics. In this work, we report for the controlled synthesis of large-area (~cm2) single-, bi-, and few-layer WS2 using a two-step process. WOx thin films were deposited onto a Si/SiO2 substrate, and these films were then sulfurized under vacuum in a second step occurring at high temperatures ($750^{\circ}C$). Furthermore, we have developed an efficient route to transfer these WS2 films onto different substrates, using concentrated HF. WS2 films of different thicknesses have been analyzed by optical microscopy, Raman spectroscopy, and high-resolution transmission electron microscopy.

  • PDF

Influence of Annealing Temperature on Structural and Thermoelectrical Properties of Bismuth-Telluride-Selenide Ternary Compound Thin Film

  • Kim, Youngmoon;Choi, Hyejin;Kim, Taehyeon;Cho, Mann-Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.2-304.2
    • /
    • 2014
  • Chalcogenides (Te,Se) and pnictogens(Bi,Sb) materials have been widely investigated as thermoelectric materials. Especially, Bi2Te3 (Bismuth telluride) compound thermoelectric materials in thin film and nanowires are known to have the highest thermoelectric figure of merit ZT at room temperature. Currently, the thermoelectric material research is mostly driven in two directions: (1) enhancing the Seebeck coefficient, electrical conductivity using quantum confinement effects and (2) decreasing thermal conductivity using phonon scattering effect. Herein we demonstrated influence of annealing temperature on structural and thermoelectrical properties of Bismuth-telluride-selenide ternary compound thin film. Te-rich Bismuth-telluride-selenide ternary compound thin film prepared co-deposited by thermal evaporation techniques. After annealing treatment, co-deposited thin film was transformed amorphous phase to Bi2Te3-Bi2Te2Se1 polycrystalline thin film. In the experiment, to investigate the structural and thermoelectric characteristics of Bi2Te3-i2Te2Se1 films, we measured Rutherford Backscattering spectrometry (RBS), X-ray diffraction (XRD), Raman spectroscopy, Scanning eletron microscopy (SEM), Transmission electron microscopy (TEM), Seebeck coefficient measurement and Hall measurement. After annealing treatment, electrical conductivity and Seebeck coefficient was increased by defect states dominated by selenium vacant sites. These charged selenium vacancies behave as electron donors, resulting in carrier concentration was increased. Moreover, Thermal conductivity was significantly decreased because phonon scattering was enhanced through the grain boundary in Bi2Te3-Bi2Te2Se1 polycrystalline compound. As a result, The enhancement of thermoelectric figure-of-merit could be obtained by optimal annealing treatment.

  • PDF

Synthesis and Characterization of Large-Area and Highly Crystalline Molybdenum Disulphide Atomic Layer by Chemical Vapor Deposition

  • Park, Seung-Ho;Kim, Yooseok;Kim, Ji Sun;Lee, Su-Il;Cha, Myoung-Jun;Park, Chong-Yun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.356.1-356.1
    • /
    • 2014
  • The Isolation of few-layered transition metal dichalcogenides has mainly been performed by mechanical and chemical exfoliation with very low yields. in particular, the two-dimensional layer of molybdenum disulfide (MoS2) has recently attracted much interest due to its direct-gap property and potential application in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS2 atomic thin layers is still rare. In this account, a controlled thermal reduction-sulfurization method is used to synthesize large-MoOx thin films are first deposited on Si/SiO2 substrates, which are then sulfurized (under vacuum) at high temperatures. Samples with different thicknesses have been analyzed by Raman spectroscopy and TEM, and their photoluminescence properties have been evaluated. We demonstrated the presence of mono-, bi-, and few-layered MoS2 on as-grown samples. It is well known that the electronic structure of these materials is very sensitive to the number of layer, ranging from indirect band gap semiconductor in the bulk phase to direct band gap semiconductor in monolayers. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS2 films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

  • PDF

크롬을 사용한 Tialite계 안료 (Cr-doped Tialite Pigments)

  • 김연주;이병하
    • 한국재료학회지
    • /
    • 제21권9호
    • /
    • pp.515-519
    • /
    • 2011
  • The purpose of this study was to determine the optimal firing condition and composition for $Al_2TiO_5$ crystal, which is suitable for stable coloration in glazes at high temperatures, using $Cr_2O_3$ as chromophore for the synthesis of $Al_2TiO_5$ system pigments. $Al_2TiO_5$ has a high refractive index and good solubility of chromophore in the $Al_2TiO_5$ lattice, making this structure a good candidate for the development of new ceramic pigments. Pigments were synthesized by using $Al_2O_3$ and $TiO_2$ mainly. Various amounts of $Cr_2O_3$ such as 0.01, 0.02, 0.03, 0.04 and 0.05 mole were also added. Each compound was synthesized at $1300^{\circ}C$, $1400^{\circ}C$, and $1500^{\circ}C$ for 2 hours and cooled naturally. The crystal structure, solubility limit, and color of the synthesized pigments were analyzed by XRD, SEM, Raman spectroscopy, UV and UV-vis. The changes in color as the result of applying 6 wt% of the synthesized pigments to lime barium glaze were expressed as CIE-L*a*b* values. A $Cr_2O_3$ 0.03 mole doped $Al_2TiO_5$ brown pigment was successfully synthesize at $1400^{\circ}C$, and the values of CIE-L*a*b* parameters were L* = 44.62, a* = 3.10, and b* = 17.25. In the case of the pigment synthesized at $1500^{\circ}C$, the brown color was obtained at 0.01 mole and 0.02 mole $Cr_2O_3$, and the CIE-L*a*b* values were 55.34, 1.73, 28.64, and 49.39, 0.51, 21.33, respectively. At $1500^{\circ}C$, the maximum limit of solid solution was 0.03 mole $Cr_2O_3$. The glazed sample showed green color, and the values of the CIEL* a*b* parameters were L* = 45.69, a* = -0.98, and b* = 20.38.

Structural Evolution of Layered $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ upon Electrochemical Cycling in a Li Rechargeable Battery

  • 홍지현;서동화;김성욱;권혁조;박영욱;강기석
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.37.2-37.2
    • /
    • 2010
  • Recently $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ has been consistently examined and investigated by scientists because of its high lithium storage capacity, which exceeds beyond the conventional theoretical capacity based on conventional chemical concepts. Consequently, $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ is considered as one of the most promising cathode candidates for next generation in Li rechargeable batteries. Yet the mechanism and the origin of the overcapacity have not been clarified. Previously, many authors have demonstrated simultaneous oxygen evolution during the first delithiation. However, it may only explain the high capacity of the first charge process, and not of the subsequent cycles. In this work, we report a clarified interpretation of the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$, which is the key element in understanding its anomalously high capacity. We identify how the structural evolution of $Li_{1.2}Ni_{0.2}Mn_{0.6}O_2$ occurs upon the electrochemical cycling through careful study of electrochemical profiles, ex-situ X-ray diffraction (XRD), HR-TEM, Raman spectroscopy, and first principles calculation. Moreover, we successfully separated the structural change at subsequent cycles (mainly cation rearrangement) from the first charge process (mainly oxygen evolution with Li extraction) by intentionally synthesizing sample with large particle size. Consequently, the intermediate states of structural evolution could be well resolved. All observations made through various tools lead to the result that spinel-like cation arrangement and lithium environment are created and embedded in layered framework during repeated electrochemical cycling.

  • PDF

FCVA 방법으로 증착된 DLC 박막의 열처리에 따른 구조적, 전기적 물성 분석 (Effects of thermal treatment on structural and electrical properties of DLC films deposited by FCVA method)

  • 김영도;장석모;박창균;엄현석;박진석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 C
    • /
    • pp.1536-1538
    • /
    • 2002
  • Effects at thermal treatment on the structural and electrical properties at DLC films have been studied. The DLC films were deposited by using a modified FCVA system as a function at negative substrate bias voltage, deposition time, and nitrogen flow rate. The thermal treatment on DLC films could be achieved by performing the RTA process at $600^{\circ}C$, 2min. Structural investigation on the thermal treatment effect was evaluated by inspecting the Raman spectroscopy, XPS, AFM, and internal compressive stress. In addition, the electrical properties of DLC films were evaluated by using the high current source and Lab-View data acquisition system. As the result at RTA treatment, $sp^3/sp^2$ ratio and internal compressive stress of the DLC films were decreased tram 5% to 22% and from 1GPa to 3GPa, and the $I_D/I_G$ intensity ratios was increased from 0.19 to 0.35. It was also found that the variation of internal stress of DLC films strongly agree with the variation of $sp^3/sp^2$ fraction and $I_D/I_G$ intensity ratio.

  • PDF

CARS를 이용한 희박 예혼합 가스터빈 연소기내 온도 측정 (2);당량비가 위상별 온도에 미치는 영향 (Phase-resolved CARS Temperature Measurements in a Lean Premixed Gas Turbine Combustor (2);Effect of equivalence ratio on phase-resolved gas temperature)

  • 이종호;문건필;박철웅;한재원;전충환;장영준
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.103-108
    • /
    • 2003
  • The effect of equivalence ratio and fuel/air mixing quality on the phase-resolved gas temperatures at different phases of the oscillating pressure cycle was experimentally investigated. An atmospheric pressure, optically accessible and laboratory-scale dump combustor operating on methane with heat release rate of 1.59kW was used. Temperature measurements were made using coherent anti-Stokes Raman spectroscopy (CARS) at several spatial locations for typical unstable combustion conditions. Analysis was conducted using parameters such as phase-resolved averaged temperature, normalized standard deviation and temperature probability distribution functions (PDFs). Also the probability on the occurrence of high temperature (over 1900K) was investigated to get the information on the perturbation of equivalence ratio and NOx emission characteristics. It was shown that most of temperature histograms exhibit Gaussian profile which has short breadth of temperature fluctuation at equivalence ratio of 0.6, while beta profile was predominant for the cases of other equivalence ratios (${\Phi}$=0.55, 0.50). The characteristics on the occurrence of high temperature also displayed periodic wave form which is very similar to the pressure signal. And the amplitude of this profile goes larger as the fuel/air mixing quality become poorer. These also provided additional information on the perturbation of equivalence ratio at flame as well as NOx emission characteristics.

  • PDF

Diopside 금색 결정 유약의 발색 기구 (Optimum Condition and Color Mechanism for Gold Color Glaze in Diopside Crystallization)

  • 김금선;임성호;이병하
    • 한국재료학회지
    • /
    • 제23권5호
    • /
    • pp.286-292
    • /
    • 2013
  • Generally, the color gold has had a biased conception due to its traditional use. Thus, this bias has resulted in a lack of usage of golden glaze on ceramics and also a lack of extensive studies of such glazes. In this paper, optimum conditions and mechanism of formation of gold color crystallization glaze containing $Fe_2O_3$(hematite), which is developed for gold colors of ceramic glazes, were studied. Experimental result showed that there are pyroxene based on diopside and $TiO_2$ phase in the base of a crystallization glaze with a value of $TiO_2$ of 6 wt% confirmed by XRD and Raman Spectroscopy. When $Fe_2O_3$ was used as a colorant for the gold color, the $TiO_2$ peak became extinct and the intensity of the diopside peak was sharper. Feldspar of 60 wt%, talc of 20 wt% and limestone of 20 wt% were used as the starting materials and these were tested using a three component system. The best result of test was selected and extended to its vicinity as an experiment to determine $TiO_2$ and $Fe_2O_3$ contents. The glaze with $TiO_2$ of 6 wt% and $Fe_2O_3$ of 12 wt% addition showed stable pyroxene based diopside crystals and the development of gold color. This gold color was obtained with CIE-$L^*a^*b^*$ values of 51.27, 4.46, 16.15 (a grayish yellow brown color), which was gained using the following firing conditions: temperature increasing speed $5^{\circ}C$/min, holding for 1 h at $1280^{\circ}C$, annealing speed $3^{\circ}C$/min till $1100{\circ}C$, holding for 2 h at $1100{\circ}C$, and finally natural annealing.

바이오디젤과 디젤 연기입자의 광학특성 및 무차원 광소멸계수 측정에 관한 연구 (A Study of Optical Characteristics for Biodiesel and Diesel Smoke Particles and Measuring their Dimensionless Light Extinction Constants)

  • 최석천;장영석;박설현;김연규
    • 한국화재소방학회논문지
    • /
    • 제30권1호
    • /
    • pp.37-42
    • /
    • 2016
  • 바이오디젤(Soy Methyl Ester, B100)과 디젤(Ultra Low Sulfur Diesel, ULSD)의 연소과정에서 발생되는 연기입자의 무차원 광소멸계수를 측정하였다. 무차원 광소멸계수는 633 nm의 He-Ne 레이저를 이용하여 광학적 방법으로 측정된 연기입자의 체적분율과 중력식 필터법에 의해 채집된 연기입자의 체적분율을 비교하여 결정하였다. 633 nm 대역에서 측정된 평균 무차원 광소멸계수는 각각 바이오디젤의 연기입자가 11.8, 디젤 연기입자가 11.1으로 측정 불확도 범위(${\pm}10.1%$) 내에서 거의 유사하였다. 다만, 라만 spectrum 분석결과를 통해 각 연료에서 발생된 연기입자 간의 광소멸(광흡수/광산란) 특성은 서로 상이할 수 있음을 확인할 수 있었다.