• Title/Summary/Keyword: Raman Fiber Amplifier (RFA)

Search Result 2, Processing Time 0.018 seconds

On the Optimization of Raman Fiber Amplifier using Genetic Algorithm in the Scenario of a 64 nm 320 Channels Dense Wavelength Division Multiplexed System

  • Singh, Simranjit;Saini, Sonak;Kaur, Gurpreet;Kaler, Rajinder Singh
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.118-123
    • /
    • 2014
  • For multi parameter optimization of Raman Fiber Amplifier (RFA), a simple genetic algorithm is presented in the scenario of a 320 channel Dense Wavelength Division Multiplexed (DWDM) system at channel spacing of 25 GHz. The large average gain (> 22 dB) is observed from optimized RFA with the optimized parameters, such as 39.6 km of Raman length with counter-propagating pumps tuned to 205.5 THz and 211.9 THz at pump powers of 234.3 mW, 677.1 mW respectively. The gain flattening filter (GFF) has also been optimized to further reduce the gain ripple across the frequency range from 190 to 197.975 THz for broadband amplification.

Simulation and Experimental Validation of Gain-Control Parallel Hybrid Fiber Amplifier

  • Ali, Mudhafar Hussein;Abdullah, Fairuz;Jamaludin, Md. Zaini;Al-Mansoori, Mohammed Hayder;Al-Mashhadani, Thamer Fahad;Abass, Abdulla Khudiar
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.657-662
    • /
    • 2014
  • We demonstrate a simulation of a parallel hybrid fiber amplifier in the C+L-band with a gain controlling technique. A variable optical coupler is used to control the input signal power for both EDFA and RFA branches. The gain spectra of the C+L-band are flattened by optimizing the coupling ratio of the input signal power. In order to enhance the pump conversion efficiency, the EDFA branch was pumped by the residual Raman pump power. A gain bandwidth of 60 nm from 1530 nm to 1590 nm is obtained with large input signal power less than -5 dBm. The gain variation is about 1.06 dB at a small input signal power of -30 dBm, and it is reduced to 0.77 dB at the large input signal power of -5 dBm. The experimental results show close agreement with the simulation results.