• Title/Summary/Keyword: Ramadan Effect

Search Result 7, Processing Time 0.023 seconds

Does Ramzan Effect the Returns and Volatility? Evidence from GCC Share Market

  • ABRO, Asif Ali;UL MUSTAFA, Ahmed Raza;ALI, Mumtaz;NAYYAR, Youaab
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.7
    • /
    • pp.11-19
    • /
    • 2021
  • The study aims to investigate the impact of seasonality in Gulf Cooperation Council (GCC) countries' share market during the month of Ramadan. It helps in finding the opportunities for stock market investors to earn abnormal (returns) gain by investing during Ramadan in GCC stock markets. This study uses stock returns data of GCC countries (Saudi Arabia, Bahrain, Qatar, Kuwait, Dubai, and UAE) from January 2004 to November 2019. Stock prices indexes of GCC stock markets have been obtained from Datastream. The ARCH-GARCH model is used to study the impact of the Ramadan month on the return and volatility of the stock market in GCC countries. The results showed that the Ramadan month has a significant impact on share market prices in Saudi Arabia and the United Arab Emirates. However, Ramadan has an insignificant impact on share market prices in Bahrain and Oman. The study found no evidence of serial correlational between residuals in Kuwait; meaning that stock return was not dependent on the prior stock returns in Kuwait, therefore, we cannot go for forecasting. The ARCH-LM test statistic for Qatar does not fulfill the requirement of a good regression model; therefore, we cannot go for forecasting or testing the hypothesis of Qatar.

Behavior of gusset plate-T0-CCFT connections with different configurations

  • Hassan, M.M.;Ramadan, H.M.;Naeem, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.735-751
    • /
    • 2014
  • Concrete-filled steel tube (CFT) composite columns, either circular (CCFT) or rectangular (RCFT), have many economical and aesthetic advantages but the behavior of their connections are complicated. This study aims to investigate, through an experimental program, the performance and behavior of different connections configurations between circular concrete filled steel tube columns (CCFT) and gusset plates subjected to shear and axial compression loadings. The study included seventeen connection subassemblies consisting of a fixed length steel tube and gusset plate connected to the tube end with different details tested under half cyclic loading. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution.

The Possible Protective Role of Korean Ginseng on Ochratoxicosis: with Special References on Chromosomal Aberrations in Rats.

  • Nada, Spomaia A.;Arbid, Mahmoud S.;Ramadan, A.I.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.253-262
    • /
    • 1998
  • Ochratoxin A (OA) is a potent mycotoxin causing considerable health hazard and economic loss- e,i. OA is of concern as it is hepato-nephrotoxic, mutagenic, and carcinogenic to a great variety of animals. LDso of crude OA was 8.5 mgf kg.b.w., i.p. The clinical symptoms, mortalities and necropsy were recorded in rats injected with OA (LD5o, i.p.) during 10 days of daily treatment. Ginseng treatments (20 mg 1 kg. b.w., i.p.) : before, mixed with, or after OA dose, completely prevented the mortality in rats. OA-treated animals showed microcytic normochromic anaemia, lucocytosis, hypoproteinaemia and elevation of serum ALT, AST, AP, urea, and creatinine values. These findings were declined near the normal levels when ginseng injected with OA. OA (115 LDso) induced chromosomal aberrations (65.66%) compared to the control. When ginseng given 10 min before OA injection, chromosomal aberrations were reduced to be 31.66% compared to OA-treated animals. In conclusion: ginseng has a protective effect against ochratoxicosis, it has anti-genotoxic activity and it can repair the chromosomal damage induced by ochratoxin A. Key words Ochratoxicosis, Chromosomal aberrations, Mycotoxins, Ochratoxin A, Korean gin sting, Protective effect of Panax ginseng, Rat

  • PDF

Experimental and numerical study of one-sided branch plate-to-circular hollow section connections

  • Hassan, M.M.;Ramadan, H.;Abdel-Mooty, M.;Mourad, S.A.
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.877-895
    • /
    • 2015
  • Connections to circular hollow steel sections (CHS) are considered one of the most complex and time consuming connections in steel construction. Such connections are usually composed of gusset plates welded to the outside of the steel tube or penetrating the steel tube. Design guides, accounting for the effect of connection configuration on the strength of the connection, are not present. This study aims to investigate, through experimental testing and a parametric study, the influence of connection configuration on the strength of one sided branch plate-to-CHS members. A notable effect was observed on the behavior of the connections due to its detailing changes with respect to capacity, failure mode, ductility, and stress distribution. A parametric study is performed using the calibrated analytical model to include a wider range of parameters. The study involves 26 numerical analyses of finite element models including parameters of the diameter-to-thickness (D/t) ratio, length of gusset plate, and connection configuration. Accordingly, a modification to the formulas provided by the current design recommendations was suggested to include connection configuration effects for the one sided branch plate-to-CHS members.

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

Numerical Study on Wafer Temperature Considering Gap between Wafer and Substrate in a Planetary Reactor (Planetary 형 반응기에서 웨이퍼와 기판 사이의 틈새가 웨이퍼 온도에 미치는 영향에 대한 연구)

  • Ramadan, Zaher;Jung, Jongwan;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Multi-wafer planetary type chemical vapor deposition reactors are widely used in thin film growth and suitable for large scale production because of the high degree of growth rate uniformity and process reproducibility. In this study, a two-dimensional model for estimating the effect of the gap between satellite and wafer on the wafer surface temperature distribution is developed and analyzed using computational fluid dynamics technique. The simulation results are compared with the results obtained from an analytical method. The simulation results show that a drop in the temperature is noticed in the center of the wafer, the temperature difference between the center and wafer edges is about $5{\sim}7^{\circ}C$ for all different ranges of the gap, and the temperature of the wafer surface decreases when the size of the gap increases. The simulation results show a good agreement with the analytical ones which is based on one-dimensional heat conduction model.

  • PDF

Evaluation of glycerol encapsulated with alginate and alginate-chitosan polymers in gut environment and its resistance to rumen microbial degradation

  • Gawad, Ramadan;Fellner, Vivek
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.1
    • /
    • pp.72-81
    • /
    • 2019
  • Objective: To determine the effect of gut pH and rumen microbial fermentation on glycerol encapsulated in alginate and alginate-chitosan polymers. Methods: Glycerol was encapsulated at 2.5%, 5%, 7.5%, or 10% (w/w) with sodium alginate (A) and alginate-chitosan (AC) polymers. Surface morphology and chemical modifications of the beads were evaluated using scanning electron microscopy and Fourier transform infrared (FTIR) spectra. Encapsulation efficiency was determined at the 5% glycerol inclusion level in two experiments. In experiment 1, 0.5 g of alginate-glycerol (AG) and alginate-chitosan glycerol (ACG) beads were incubated for 2 h at $39^{\circ}C$ in pH 2 buffer followed by 24 h in pH 8 buffer to simulate gastric and intestinal conditions, respectively. In experiment 2, 0.5 g of AG and ACG beads were incubated in pH 6 buffer at $39^{\circ}C$ for 8 h to simulate rumen conditions. All incubations were replicated four times. Free glycerol content was determined using a spectrophotometer and used to assess loading capacity and encapsulation efficiency. An in vitro experiment with mixed cultures of rumen microbes was conducted to determine effect of encapsulation on microbial fermentation. Data were analyzed according to a complete block design using the MIXED procedure of SAS (SAS Institute, Cary, NC, USA). Results: For AG and ACG, loading capacity and efficiency were 64.7%, 74.7%, 70.3%, and 78.1%, respectively. Based on the FTIR spectra and scanning electron microscopy, ACG treatment demonstrated more intense and stronger ionic bonds. At pH 6, 36.1% and 29.7% of glycerol was released from AG and ACG, respectively. At pH 2 minimal glycerol was released but pH 8 resulted in 95.7% and 93.9% of glycerol released from AG and ACG, respectively. In vitro microbial data show reduced (p<0.05) fermentation of encapsulated glycerol after 24 h of incubation. Conclusion: The AC polymer provided greater protection in acidic pH with a gradual release of intact glycerol when exposed to an alkaline pH.