• Title/Summary/Keyword: Rakuna-IV

Search Result 2, Processing Time 0.017 seconds

Stability Formula for Rakuna-IV Armoring Rubble-Mound Breakwater (사석방파제 위에 피복한 Rakuna-IV의 안정공식)

  • Suh, Kyung-Duck;Lee, Tae Hoon;Matsushita, Hiroshi;Nam, Hong Ki
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.181-190
    • /
    • 2013
  • In this study, a total of 51 cases of hydraulic model tests has been conducted for various wave conditions and slope angles of breakwater to develop a stability formula for Rakuna-IV armoring a rubble-mound breakwater. The stability number of the formula is expressed as a function of relative damage, number of waves, structural slope, and surf similarity parameter. The stability formula is derived separately for plunging and surging waves, the greater of which is used. The transitional surf similarity parameter from plunging waves to surging waves is also presented. Lastly, to explain the stability of Rakuna-IV to the engineers who are familiar with the stability coefficient in the Hudson formula, the required weight of Rakuna-IV is calculated for varying significant wave height for typical plunging and surging wave conditions, which is then compared with those of the Hudson formula using several different stability coefficients.

Comparison of Stability Coefficients of Radial Shape Armor Blocks Depending on Placement Methods (피복 방법에 따른 방사형 소파 블록의 안정계수 비교)

  • Min, Eun-Jong;Cheon, Se-Hyeon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2015
  • In this study, two different uniform placement methods are proposed for each of Tetrapod, Rakuna-IV, and Dimple armoring a rubble mound breakwater, and the corresponding stability coefficients are determined by hydraulic experiments. The Tetrapod and Rakuna-IV show similar stability coefficients regardless of the placement methods, whereas the Dimple shows somewhat different stability coefficients depending on the placement methods. It is shown that the Dimple gives the largest stability coefficient, whereas the Tatrapod gives the smallest value. The uniform placement methods of Tatrapod and Rakuna-IV give slightly larger stability coefficients than the random placement, whereas the uniform placements of Dimple give much larger stability coefficients than the random placement. However, the small void ratio of uniform placements of Dimple requires attention because the blocks would behave like single layer system blocks so that brittle failure could occur.