• 제목/요약/키워드: Rake angle of fin

검색결과 4건 처리시간 0.016초

유동층 연소로 내에서 수평 휜 전열관의 열전달 특성에 관한 실험적 연구 (An Experimental study on Heat Characteristics of Horizontal Tubes with Fin in Fluidized Bed Combustor)

  • 강형수;정태용
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.19-29
    • /
    • 1996
  • This study is to investigate the characteristics of heat transfer of a horizontal tube, with radial fins of various configuration, immersed in a high temperature fluidized bed. The experimental heat transfer variation is compared with that of a smooth tube. The finned tubes and smooth tube, with outside and inside diameter of 48.6mm and 30.6mm, are made of steel tubes. The depth of the fin is 5mm, the rake angles of fin are $25^{\circ},\;35^{\circ},\;45^{\circ}$ and the widthes of fin for each rake angle are 0mm, 1mm, 2mm and 3mm. A bed temperature is fixed at $880\;{\pm}\;10^{\circ}C$. A granular refractory(silica sand) is used as a bed material with mean particle diameters of 1.22mm and 1.54mm. The maximum heat transfer coefficient is achieved with the rake angle of $25^{\circ}$ and the width of 0mm for the mean particle size 1.22mm. The coefficient is 2.14 times larger than that for a smooth tube. The rake angle for the maximum heat transfer coefficient depends on the particle size of bed material. Also the transfer coefficient decreases as the width of fin increases.

  • PDF

유동층 연소로 내에서 수평전열관의 열전달 특성에 관한 연구 (Heat Transfer Characteristics of a Horizontal Fin Tube in a Fluidized Bed Combustor)

  • 맹민재;정준기;정태용
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2365-2372
    • /
    • 1995
  • The objective of this study is to get the basic data for the development of fluidized bed combustor. For this purpose, various rake angles(.theta.=20.deg., 25.deg., 30.deg., 35.deg.) of finned tubes and a smooth tube were installed horizontally in the fluidized bed combustor of 410*250mm. The effect of fluidized bed temperature, superficial velocity in bed, size of bed materials, rake angle of finned tubes on the heat transfer coefficient was experimentally investigated. The following results were obtained. (1) Under the fluidized bed temperature(750.deg. C-900.deg. C), and the gas velocity in bed(1.1-2.8m/sec), The highest heat transfer coefficient was measured with the rake angle of finned tubes was .theta.=25.deg. and .theta.=35.deg. for the average fluidized material particle size of 1.22mm and 1.54mm, respectively. Generally, the heat transfer coefficient of finned tubes is 1.4 to 2.4 times larger than that of smooth tubes. (2) The size of bed materials influences the rake angle of finned tubes which can have the highest heat transfer coefficient. As the temperature in bed gets higher, the effect of the rake angle of finned tubes on the heat transfer coefficient becomes greater.

경사진 충돌제트를 이용한 핀 휜 히트싱크의 열특성 연구 (Heat Transfer Characteristics of Inclined Jet Impinging on a Pin Fin Heat Sink)

  • 홍기호;송태호
    • 대한기계학회논문집B
    • /
    • 제28권8호
    • /
    • pp.961-967
    • /
    • 2004
  • An inclined jet impinging on a pin fin heat sink is proposed and investigated experimentally. To investigate the flow pattern, flow visualization using fluorescence and velocity measurement using particle image velocimetry(PIV) are conducted with water. The jet impinges over a wide span of the heat sink with a large recirculation in the upper free space and occasionally with another smaller one in the upstream corner. Further, thermal experimentation is conducted using air to obtain temperature profiles using a thermocouple rake in the air and using thermal image on the heat sink back plate, with impinging angles of 35, 45 and 55 degrees. The Reynolds number range based on the nozzle slot is varied from 1507 to 6405. The results show that impinging angle of 55 degree shows the largest heat transfer capability. The results of thermal experiment are compared and discussed with those of flow visualization.

순환유동층 보일러 전열관의 열전달 특성 (Heat Transfer of Smooth and Finned Tubes in A CFBC)

  • 김부현;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.651-655
    • /
    • 2000
  • The objective of present work is to investigate experimentally the characteristics of heat transfer. A fluidized bed combustion has advantages of pollution control, fuel flexibility and excellent heat transfer. The present study investigates fundamental phenomena of bed-to-surface heat transfer in high temperature fluidized beds to improve design of immersed tube surface. The tested operating variables are bed temperature, supeficial velocity, mean size of bed material, and the rake angle of fin. Generally, heat transfer rates between the fluidized bed and immersed finned-tube are much higher than those of a smooth tube. A life time of finned-tube is generally longer than that of smooth tube.

  • PDF