• Title/Summary/Keyword: Raising Dam

Search Result 20, Processing Time 0.025 seconds

A Study on Pore Water Pressure Behavior of Fill Dam with Water Level Raising using Centrifugal Model Tests (원심모형실험에 의한 수위상승시 필댐의 간극수압 거동 연구)

  • Lee, Chung-Won;Chang, Dong-Su;Park, Sung-Yong;Kim, Ki-Sung;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.87-95
    • /
    • 2013
  • The aim of this study is to examine the behavior of reservoir fill dam with the water level raising by use of the centrifugal model test and the numerical simulation. In this study, LIQCA2D-SF based on the cyclic elasto-plastic constitutive model proposed by Oka et al. (1999) is applied for numerical simulation. In order to investigate the displacements and the pore water pressures in the fill dam due to the water level raising velocity, three model tests in centrifugal field of 50g for fill dams were conducted. A comparison between the test result and the simulation result has provided the influence on the displacement and the pore water pressure of the fill dam with increasing up of the water level.

Deformation Behavior of Existing Concrete-Faced Rockfill Dam due to Raising (증고에 따른 기존 CFRD 댐체의 변형거동)

  • Shin, Donghoon;Cho, Sungeun;Jeon, Jesung;Lee, Jongwook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.77-83
    • /
    • 2007
  • In this study, deformation behavior of existing concrete face rockfill dam, which is raised to a certain height to enhance storage capacity or to improve hydraulic and hydrologic stability, is examined using numerical analysis method. The results obtained from FEM analysis show a possibility that additional fill at downstram slope of existing CFRD dam body may lead undesirable deformations and stresses in existing dam body, especially in face concrete, such as settlements in upper part and bulging in lower part, excessive bending moments, and eventualy tensile cracks. Therefore, in designing multi-staged raising construction of CFRD, it is essential to consider deformations and stresses to be developed within and between exisiting dam body and added parts due to additional fill, and to prepare a proper measure to prevent abnormal deformations and stresses in the dam body including added parts.

  • PDF

Dam Failure and Unsteady Flow Analysis through Yeoncheon Dam Case(I) -Analysis of Dam Failure Time and Duration by Failure Scenarios and Unsteady Flow - (연천댐 사례를 통한 댐 파괴 부정류해석 및 하류 영향 검토(I) -댐 파괴 시나리오와 부정류 해석을 통한 지속시간 및 파괴시간 해석-)

  • Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1281-1293
    • /
    • 2008
  • This study aims at the estimation of dam failure time and dam failure scenario analysis of and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-HMS, DAMBRK-FLDWAV simulation model. As the result of the rainfall-runoff simulation, the lancet flood amount of the Yeoncheon Dam site was $10,324\;m^3/sec$ and the total outflow was $1,263.90\;million\;m^3$. For the dam failure time estimation, 13 scenarios were assumed including dam failure duration time and starting time, which reviewed to the runoff results. The simulation time was established with 30 minutes intervals between one o'clock to 4 o'clock in the morning on August 1, 1999 for the setup standard for each case of the dam failure time estimation, considering the arrival time of the flood, when the actually measured water level was sharply raising at Jeongok station area of the Yeoncheon Dam downstream, As results, dam failure arrival time could be estimated at 02:45 a.m., August 1st 1999 and duration time could be also 30 minutes. Those results and procedure could suggest how and when dam failure occurs and analyzes.

An alternative upstream method for the Zhelamuqing tailings impoundment construction of a Copper Mine in China

  • Wei, Zuoan;Chen, Yulong;Yin, Guangzhi;Yang, Yonghao;Shu, Weimin
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.383-392
    • /
    • 2019
  • How to safely and economically dispose mining tailings is a challenge to mine operators. This paper presents an alternative upstream method for tailings dam construction, termed as the template construction method (TCM), which has been successfully implemented at Zhelamuqing tailings impoundment since 2004. By the beginning of 2015, the tailings dam wall had reached 95 m in height for the 46 upstream raises, with the total height of the dam including the starter dyke being 128 m. The proposed TCM is relatively simple and cost-effective and provides a good way for constructing rapidly raising tailings dam based on this case.

Hydrological Stability Analysis of the Existing Soyanggang Multi-Purpose Dam (소양강 다목적댐의 수문학적 안정성 검토)

  • 고석구;신용노
    • Water for future
    • /
    • v.28 no.3
    • /
    • pp.187-195
    • /
    • 1995
  • This study aims at suggesting an alternative to improve current capacity of flood control for the existing Soyanggang multi-purpose dam which was constructed 20 years ago as a largest dam in Korea. The newly estimated value of the probable maximum precipitation(PMP) is 760.0 mm which is based on the hydrometeorological method. The peak inflow of 1000 years return period at the time of construction was 13,500$m^3$/s. However, the newly estimated peak inflow of the PMF is 18,100$m^3$/s which is 1.34 times bigger than the original one. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared; (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing one, (3) raising the existing dam crest, (4) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang multipurpose dam. The preliminary evaluation of these alternatives resulted in that the second alternative is most economical and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multi-purpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF

Hydrological Stability Analysis of the Existing Soyanggang Multipurpose Dam

  • Ko, Seok-Ku;Shin, Yong-Lo
    • Korean Journal of Hydrosciences
    • /
    • v.7
    • /
    • pp.37-49
    • /
    • 1996
  • This study aims at suggesting an alternative to improve flood controling capacity according to the cument design criteria for the existing Soyanggang Multi-purpose Dam which was constructed 20 years ago as the largest dam in Korea. The peak inflow of the adopted probable maximum flood (PMF) at the time of construction was 13,500 $m^3$/s. However, the newly estimated peak inflow of the PMF is 18,000 $m^3$/s which is 1.34 times bigger than the original one. This is considered to be due to the accumulation of the reliable flood and storm event records after construction, and due to the increasing tendency of the local flood peaks according to the influence of world-wide weather change. The new estimation of the probable maximum precipitation (PMP) was based on the hydro-meteorological method suggested by the guideline of the World Meteorological Organization (WMO). The unit hydrograph which was applied for the estimation of PMF was derived through linear programming algorithm by minimizing the sum of absolute deviations of the calculated and recorded flood hydrographs. In order to adopt the newly estimated PMF as a design flood, following four alternatives were compared : (1) allocation of more flood control space by lowering the normal high water level, (2) construction of a new spillway in addition to the existing spillway, (3) construction of a new dam which has relevant flood control storage at the upstream of the Soyanggang dam, (4) raising the existing dam crest. The preliminary evaluation of these alternatives resulted in that the second alternative is most economic and feasible. So as to stably cope with the newly estimated PMF by meeting all the current functions of the multipurpose dam, a detailed study of an additional spillway tunnel has to be followed.

  • PDF

The Effects of Coloring Admixture on the Material Properties of Color Concrete (착색재가 칼라콘크리트의 물성에 미치는 영향)

  • 이성로;김종식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.150-154
    • /
    • 2000
  • Coloring admixture is used for take color inside and outside of mortar and concrete, differently form pigment and spray paint take color limited surface. In our country, Using the coloring admixture is very slight and regulation is not yet about it. But that is expected the increase with raising the standard of living. Especially it is used to civil structure like dam and seawall for the environment harmony. Then we observe, in this experiment, the effect of coloring admixture on the material properties of color concrete and propose the suitable mix-proportion of color concrete.

  • PDF

Recent Techniques for Design and Construction of CFRD (CFRD의 최근 설계ㆍ시공기술 동향)

  • Park Dong-Soon;Kim Hyoung-Soo;Lim Jeong-Yeul
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.77-86
    • /
    • 2005
  • CFRD(Concrete Faced Rockfill Dam) is in widespread use because this type of dam has superior characteristics in structural, material aspects comparing with earth cored rockfill dam. On this paper, up-to-date re-searches and techniques are summed up to be available for future needs in design and construction of CFRD. For example, such items as embankment using weak rock, experience of sand-gravel fill CFRD, connecting slab applied between plinth and face slab, raising experience of old dm, inverse filtration problem, environmental friendly zone, thickness and reinforcing of face slab, alluvial foundation treatment, and curb element method, are summarized for understanding of related engineers.

A Study for Storage Reallocation of Multipurpose Reservoir(I) - Flood Control Storage Analysis (다목적댐 용량 재할당에 대한 연구(I)- 치수용량 분석)

  • Yi, Jae-Eung;Kwon, Yong-Ik;Yoon, Young-Nam;Ahn, Tae-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.4
    • /
    • pp.273-281
    • /
    • 2004
  • Generally, reservoir storage is allocated according to planned purposes established before construction and operating policies are established through release control. The established reservoir allocation is hardly changed unless the special cases such as raising dam or changed purposes occur It Is, however, likely that public needs and objectives can be changed as time go on, the study for multipurpose reservoir storage reallocation is performed as an alternative to reflect these. In this study, flood control analysis is performed for several alternatives of reallocation for the Daechung multi-purpose reservoir in Geum river. As a result, it is confirmed that flood control capability is not decreased compared to single operation of Daechung reservoir for the same flood condition even if conservation level of Daechung multi-purpose reservoir is increased.

Resilience Assessment of Dams' Flood-Control Service (댐 홍수조절기능의 회복탄력성 산정)

  • Kim, Byungil;Shin, Sha Chul;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1919-1924
    • /
    • 2014
  • Recently, due to the climate change, the frequency and intensity of extreme rainfall events have been continuously increased in regions of South Korea. As a consequence, safety issues have been raised especially in the hydrologic safety of old dams designed and constructed by the old standards. In general, for improving hydrologic safety of existing dams, two options are considered: 1) raising dam crest; and 2) constructing or expanding an emergency spillway. In this process, the main criteria of alternative selection are overtopping possibility and cost efficiency of each alternative. This approach is easy to implement but it is subject to major limitation for the proper evaluation of alternatives, overlooking downstream flood damages by any controlled flow of water that is intentionally released from dams to eliminate the possibility of overtopping. Therefore, this study suggests a framework for evaluating the dam safety strengthening alternatives in terms of a comprehensive flood control by applying the concept of resilience. The case study shows that the resilience-based evaluation framework which considering downstream flood damages is effective in the selection of dam safety strengthening alternatives.