• Title/Summary/Keyword: Rainwater Infiltration Facilities

Search Result 27, Processing Time 0.027 seconds

An Analysis of Rainwater Overflow by Housing Development and Overflow Decrease Method - Focused on the 13, 14 Districts (Motjarigol) of the Eun-pyung New Town in Seoul - (단지 개발로 인한 우수 유출량 변화 예측 및 저감방안에 관한 연구 - 서울 은평뉴타운 13, 14단지(못자리골)를 중심으로 -)

  • Sung, Jong-Sang;Lee, Eun-Seok;Kim, Dae-Hee
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.4 s.117
    • /
    • pp.116-128
    • /
    • 2006
  • This study focuses on hydrological changes caused by developments in the 13th, 14th (Motjarigol) district in Eun Pyoung New Town, Seoul on the basis of the Land Use Planning of development plan. Through analyses from the hydrological experiments about rainfall outflow using universal equation and amounts of infiltration through soils, the changes in amounts of overflows were estimated and the results were discussed from a urban ecological point of view. As a result, it has been predicted that the amount of rainfall outflow at post-development was dramatically increased, compared to pre-development. Installing of Derbris Dams and infiltration facilities were suggested as alternative plan to meditigate these changes. If we apply these alternatives, the rainfall outflow would be reduced up to 30% compared to the development plan without BMPs (Best Management Practice). In conclusion, it is proposed that once the ecological principles were considered during development planning process, we can minimize the adverse effects of developments to our environments.

Rainwater Infiltration Characteristics in the Unsaturated Soil : Comparison of Finite Element Model with Experimental Results (불포화 토양에서 빗물의 침투특성 : 유한요소 모델과 실험결과 비교)

  • Yoo, Kun-Sun;Kim, Sang-Rae;Kim, Tschung-Il;Yoon, Hyun-Sik;Han, Moo-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.6
    • /
    • pp.27-33
    • /
    • 2011
  • Infiltration plays an important role in the urban water cycle. Infiltration has a potential to contribute to groundwater recharge in addition to runoff reduction. However, infiltration in urban areas has been considered only as a means of runoff reduction. Conventional design methods for infiltration facilities assume soils to be fully-saturated for the sake of simplicity. The amount of groundwater recharge can not be estimated properly with this scheme. Hence, the characteristics of the unsaturated soil condition need to be considered. The finite element model using SEEP/W to estimate infiltration under the unsaturated condition is presented. Infiltration tests for Joomonjin sand are performed and the infiltration behavior of Joomoonjin sand under the unsaturated condition is measured experimentally to verify the validity of the finite element model. The results from comparing infiltrated volume between the saturated and the unsaturated conditions under the same soil and rainfall conditions show that the infiltrated volume in the unsaturated condition is two times bigger than that in the saturated condition.

Climate Change Adaptation Strategy by Multipurpose, Proactive Rainwater Management and Case Studies in Korea (다목적이고 적극적인 빗물관리에 의한 기후변화 적응방안과 국내 사례)

  • Han, Mooyoung;Mun, Jungsoo;Kim, Tschungil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.223-230
    • /
    • 2009
  • Most urban water management systems are becoming vulnerable to flooding and drought due to the climate change (CC), urbanization and energy shortage. Despite of poor water management circumstances caused by extremely uneven annual rainfall and hilly terrain, traditionally we have made a sound and sustainable life based on our own philosophy and technologies which copes with our rigid environment. In this study a new paradigm of rainwater management is suggested and multipurpose and creative rainwater harvesting and management (RWHM) systems are introduced providing several case studies such as rainfall storage drainage (RSD) system, rainwater infiltration facilities and star city RWHM system. This new RWHM paradigm leads Seoul Metropolitan Government (SMG) in the Republic of Korea to change regulations and politics for the integrated RWHM. Finally, RWHM is expected to improve the safety, efficiency, energy consumption of urban water infrastructure, to reduce urban heat island phenomenon and, furthermore, to contribute in finding solutions for worldwide water issues and to adapt CC.

An estimation method for the maintenance timing of the infiltration trench (침투도랑 시설의 유지관리 시점 산정방법에 관한 연구)

  • Lee, Seung Won;Cha, Sung Min
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • To manage the non-point source pollution and restore the water circulation, many technologies including infiltration or reservoir systems were installed in the urban area. These facilities have many problems regarding maintenance as their operation period becomes lengthier. The purpose of this study was to estimate the optimal maintenance timing through a long-term load test on the infiltration trench as one of the low impact development techniques. An infiltration trench was installed in the demonstration test facility, and stormwater was manufactured by Manual on installation and operation of non-point pollution management facilities from the Ministry of Environment, Korea and entered into the infiltration trench. Particle size distribution (PSD), suspended solids (SS) removal efficiency, and infiltration rate change tests were performed on inflow and outflow water. In case of the PSD, the maximum particulate size in the outflow decreased from 64 ㎛ to 33 ㎛ as the operating duration elapsed. The SS removal efficiency improved from 97 % to 99 %. The infiltration rate changed from 0.113 L/sec to 0.015 L/sec during the operation duration. The maintenance timing was determined based on the stormwater runoff requirements with these changes in water quality and infiltration rate. The methodologies in this study could be used to estimate the timing of maintenance of other low impact development techniques.

Development and Application of the Rainwater Infiltrating Equipment for the Decentralized Stormwater Managements (분산식 우수관리를 위한 침투통 개발 및 적용효과 분석)

  • 성종상;이태구;한영해;김연금;김남희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.2
    • /
    • pp.78-85
    • /
    • 2004
  • To manage rainwater environmentally friendly, it is necessary to let the rainwater be infiltrated naturally and make reservoirs to detain it in the chosen spot. Not only should it be prepared to handle the city flood, but also it be a necessary alternative for establishing the ecological water circular system in cities. Therefore, considering the present rainwater. management system, this study analysed the status of products which can be interchanged from existent systems to rainwater infiltrating systems. In this study, the infiltrating equipment that is applicable to the Korean drainage system was developed. The case was studied out to investigate the effects of infiltrating and the detaining ability of the developed product. The case site, block 6 of Sang-am residence, was selected and analyzed. The amount of infiltration and detention per unit of the introduced facilities, i.e., infiltrating pipes and tanks were calculated. In this research, the amount of each infiltrating tank was revealed to be 1.353 m/hr and the amount of detention as 0.299 m/hr. And the amount of each infiltrating pipe was found to be 0.541 m/hr and the amount of detention was 0.118 m/hr. To examine the effects of the system, the total amount of the outlet before and after installing was compared and calculated. In doing this, a basis for deciding the arrangement and number of tanks and pipes of the infiltrating system was made.

Analysis of Water Cycle Effect by Plan of LID-decentralized Rainwater Management Using SWMM-LID Model in a Low-carbon Green Village (SWMM-LID를 이용한 저탄소 녹색마을의 LID-분산형 빗물관리 계획에 따른 물순환 효과 분석)

  • Lee, Jung-Min;Hyun, Kyoung-Hak;Lee, Yun-Sang;Kim, Jung-Gon;Park, Yong-Boo;Choi, Jong-Soo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.503-507
    • /
    • 2011
  • There was a plan to develop a low-carbon green village(approximately $400,000m^2$) in A city, a new town. Restoration of water cycle is essential for creation of the low-carbon green village. Therefore, installation plan of LID-decentralized rainwater management facilities for natural water cycle was established for creation of the low-carbon green village. Analyses on effect of the water cycle were performed in conditions of before, after developing the low-carbon green village and after installing the LID facilities(rain garden, constructed wetland, rainwater harvesting facility, etc.) using SWMM-LID model developed by EPA. Due to the characteristic of permeable area before development and significant green spaces after development, installation plan of LID facilities to restore the water cycle did not show an obvious effect. However, potential of the hydrological cycle could be seen by the installation of the LID facilities.

Improvement of Infiltration by Applying Hybrid Low Impact Development (LID) Infiltration Pipes in an Urban Area (도시에서 하이브리드 LID 침투관 설치에 따른 침투량 향상)

  • Han, Kyung Soo;Park, Yong Soon
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.2
    • /
    • pp.126-129
    • /
    • 2016
  • The risk of flooding and groundwater depletion is increasing due to the increase of impervious area in an urban area that reduces the volume of infiltration and increases the outflow of rainwater. The objective of this study is to examine the impact of installation of roadside tree protectors with infiltration pipes in terms of the change of the infiltration rate. Through this study, it has been attested that roadside tree protectors with infiltration pipes increased the infiltration rate and decreased water level on the ground, and could be applied in an urban area as the low impact development (LID) facilities.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed (도시유역의 물순환 및 수질 개선을 위한 저영향개발 시설의 비용 효율 분석)

  • Choi, Jeonghyeon;Kim, Kyungmin;Sim, Inkyeong;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.206-219
    • /
    • 2020
  • As urbanization and impermeable areas have increased, stormwater and non-point pollutants entering the stream have increased. Additionally, in the case of the old town comprising a combined sewer pipe system, there is a problem of stream water pollution caused by the combined sewer overflow. To resolve this problem, many cities globally are pursuing an environmentally friendly low impact development strategy that can infiltrate, evaporate, and store rainwater. This study analyzed the expected effects and efficiency when the LID facility was installed as a measure to improve hydrologic cycle and water quality in the Oncheon stream in Busan. The EPA-SWMM, previously calibrated for hydrological and water quality parameters, was used, and standard parameters of the LID facilities supported by the EPA-SWMM were set. Benchmarking the green infrastructure plan in New York City, USA, has created various installation scenarios for the LID facilities in the Oncheon stream drainage area. The installation and maintenance cost of the LID facility for scenarios were estimated, and the effect of each LID facility was analyzed through a long-term EPA-SWMM simulation. Among the applied LID facilities, the infiltration trench showed the best effect, and the bio-retention cell and permeable pavement system followed. Conversely, in terms of cost-efficiency, the permeable pavement systems showed the best efficiency, followed by the infiltration trenches and bio-retention cells.

A Study on Runoff Water Reduction Effects According to Shapes of Formation of Artificial Soil Green Area in Multi-Housing Complex (공동주택단지 내 인공지반 녹지조성 형태에 따른 우수유출 저감효과)

  • Nam, Mi A;Jang, Dae Hee;Kim, Hyeon Soo
    • KIEAE Journal
    • /
    • v.13 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This study aims to analyze, by forming an experimental area of artificial soil green area that is of equal scale and analyzing the characteristics of runoff water in accordance with the cross-section configuration, applied the benefits in an actual multi-housing case study complex. In examining the measurement test results of the runoff water infiltration amount and surface runoff amount of a low-profile type green area(Dish type) and a general type green area(Mound type), Dish type was seen to have 1.5-times higher runoff water infiltration amount than Mound type during heavy rainfalls and showed about a 50% reduction with respect to the surface runoff amount. In other words, artificial soil green area offers the benefit of reduction of surface runoff amount and suggests, in actuality even with a change to the cross-sectional configuration of artificial soil green area alone at the time of construction of multi-housings, the possibility of benefits and reduction of costs spent on existing rainwater management facilities.