• Title/Summary/Keyword: Rainfall.

Search Result 6,218, Processing Time 0.029 seconds

The Development of Rail-Transport Operation Control using the Variation of Slope Stability under Rainfall (강우시 사면안전율 변화를 이용한 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Lee, Jin-Wook;Shin, Min-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.397-402
    • /
    • 2003
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment are defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

Distribution of average rainfall event-depth for overflow risk-based design of detention storage basin (월류위험도 기반 저류지 설계를 위한 평균강우량도 작성)

  • Kim, Dae Geun;Park, Sun Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • This study collected the latest 30-year (1976~2005) continuous rainfall data hourly recorded at 61 meterological observatories in Korea, and the continuous rainfall data was divided into individual rainfall events. In addition, distribution charts of average rainfall event-depth were created to facilitate the application to the overflow risk-based design of detention storage basin. This study shows that 4 hour is appropriate for SST (storm separation time) to separate individual rainfall events from the continuous rainfall data, and the one-parameter exponential distribution is suitable for the frequency distribution of rainfall event depths for the domestic rainfall data. The analysis of the domestic rainfall data using SST of 4 hour showed that the individual rainfall event was 1380 to 2031 times, the average rainfall event-depth was 19.1 to 32.4mm, and ranged between 0.877 and 0.926. Distribution charts of average rainfall event-depth were created for 4hour and 6 hour of SST, respectively. The inland Gyeongsangbuk-do, Western coastal area and inland of Jeollabuk-do had relatively lower average rainfall event-depth, whereas Southern coastal area, such as Namhae, Yeosu, and Jeju-do had relatively higher average rainfall event-depth.

Evaluation of Rainfall Erosivity in Korea using Different Kinetic Energy Equations (강우 운동에너지식에 따른 한국의 강우침식인자 평가)

  • Lee, Joon-Hak;Shin, Ju-Young;Heo, Jun-Haeng
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.337-343
    • /
    • 2011
  • A particular empirical equation for rainfall kinetic energy is needed to compute rainfall erosivity, calculated by the annual sum of the product of total rainfall energy and maximum 30-min rainfall intensity. If rainfall kinetic energy equation was different, rainfall erosivity will be produced differently. However, the previous studies in Korea had little concern about rainfall kinetic energy equation and it was not clear which rainfall kinetic energy is suitable for Korea. The purpose of this study is to analyze and evaluate the difference of the rainfall erosivity based on different rainfall kinetic energy equations obtained from previous studies. This study introduced new rainfall erosivity factors based on rainfall kinetic energy equation of Noe and Kwon (1984) that is only regression model developed in Korea. Data of annual rainfall erosivity for 21 weather stations in 1980~1999 were used in this study. The result showed that rainfall erosivity factors by the previous equations had been about 10~20% overestimated than rainfall erosivity by Noe and Kwon (1984)'s equation in Korea.

Rail Transport Operation Control for Railway Embankment under rainfall (강우시 성토사면의 열차운전규제기준)

  • Kim, Hyun-Ki;Shin, Min-Ho;Choi, Chan-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.225-232
    • /
    • 2009
  • Infiltration of rainfall causes railway slopes to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze its stability by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall infiltration show that rainfall infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. And suggested rainfall index is compared with the rail transport operation control which is used in KORAIL. It is judged that this rainfall index can be a good tool for the rail-transport operation control.

  • PDF

Characteristics of Andong Dam Inflow during Non-rainfall Season

  • Park, Gey-Hwan;Park, Ki-Bum;Chang, In-Soo
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.845-851
    • /
    • 2018
  • In this study, the runoff characteristics of the non-rainfall period were examined using daily rainfall data from 1977 to 2017 and the data of runoff into the dam. Results showed that, the mean runoff decreases with longer non-rainfall periods in the Andong dam basin. The correlation coefficient between non-rainfall days and average runoff reaches 0.85. The results of the analysis of the runoff characteristics during the non-rainfall period, based on the preceding rainfall of Andong dam are as follows. The runoff characteristics of the entire non-rainfall period, shows that, for a rainfall of 1.0 mm or less, the runoff height was larger than the rainfall size and the base runoff larger. The correlation between the antecedent rainfall and runoff height was reached as high as 0.9864 in the 30 ~ 50 mm interval of the antecedent rainfall period, and this is the interval where the linearity of rainfall and runoff was at its maximum in the Andong dam basin. The correlation between the antecedent rainfall and the runoff height reached 0.92 for rainfalls of 100.0 mm. However, for rainfalls of 100.0 mm greater, the correlation between the antecedent rainfall and runoff height during the rainfall period was 0.64, which is relatively small. In this study, we investigated the runoff characteristics of the rainfall period in the Andong dam watershed. As a result, it was confirmed that the mean runoff decreased with rainfall duration. The linearity was found to be weak for rainfall events greater than 100.0 mm. The results of this study can be used as data for water balance analysis and for formulating a water supply plan to establish water resource management of Andong dam.

Applicability of Huff Model & ABM Method for Discharge Capacity of Sewer Pipe (하수관거 통수능 해석을 위한 Huff 모형과 ABM 법의 적용성 분석)

  • Hyun, Inhwan;Jeon, SeungHui;Kim, Dooil
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.4
    • /
    • pp.229-237
    • /
    • 2022
  • The sewer capacity design have been based on the Huff model or the rational equation in South Korea and often failed to determine optimal capacity, resulting in frequent urban flooding or over-sizing. A time distribution of rainfall (i.e., Huff or ABM method) could be used instead of a rainfall hyetograph obtained from statistical analysis of previous rainfalls. In this study, the Huff method and the ABM method, which predict the time distribution of rain intensity, which are widely used to calculate sewage pipe drainage capacity using the SWMM, were compared with the standard rainfall intensity hyetograph of Seoul. If the rainfall duration was 30 minutes to 180 minutes, the rainfall intensity value calculated by the Huff model tended to be less than the rainfall intensity value of the standard rainfall intensity in the initial 5-10 minutes. As a result, more than 10% to 30% of under-design would be made. In addition, the rainfall intensity value calculated by the Huff model from the section excluding the initial 5-10 minutes of rainfall to the rainfall duration was calculated larger than the value using the standard rainfall intensity equation, which would result in an over-design of 10% to 30%. In the case of a relatively long rainfall duration of 360 minutes (6 hours) to 1,440 minutes (24 hours), it showed an lower rainfall intensity of 60 to 90% in the early stages of rainfall, but the problem of under-design had been solved as the rainfall duration time had elapsed. On the other hand, in the alternating block method (ABM) method, it was found that the rainfall intensity at the entire period at each assumed rainfall duration accurately matched the standard rainfall intensity hyetograph of Seoul.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

Estimation of Drought Rainfall According to Consecutive Duration and Return Period Using Probability Distribution (확률분포에 의한 지속기간 및 빈도별 가뭄우량 추정)

  • Lee, Soon Hyuk;Maeng, Sung Jin;Ryoo, Kyong Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1103-1106
    • /
    • 2004
  • The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.

  • PDF

Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province (춘천시에서 발생한 산사태 유발강우의 특성 분석)

  • Sang Ug, Kim;Kyong Oh, Baek
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

Characteristics Analyses of Timely Rainfall Events Above Probability Precipitation on Each Frequency (빈도별 확률강우량을 초과하는 시간강우사상의 특성 분석)

  • Oh, Tae Suk;Kim, Eun Cheol;Moon, Young-Il;Ahn, Jae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6B
    • /
    • pp.513-526
    • /
    • 2009
  • The flood control countermeasure establish for reducing of the flood damages. Design frequency usually reflects the current situation of the station, the importance and the design rainfall. Therefore, this study calculated frequency for duration maximum rainfall with the area which happened the flood damages by main heavy rainfall events recently. Also, to analyze for the temporal characteristics of rainfall event exceed by design rainfall, excess rainfall and excess frequency and excess rainfall per event calculated. To grasp the temporal variation, About excess rainfall and excess frequency and excess rainfall per event have analyzed by change and trend test. Also, rainfall observatory did grouping by cluster analysis using position of rainfall observatory and characteristic timely rainfall. For the grouping rainfall observatory by the cluster analysis calculated average of excess rainfall and excess frequency and excess rainfall per event. To compare for the temporal characteristics, the change and trend test had analyzed about excess rainfall, excess frequency by regional groups.