• 제목/요약/키워드: Rainfall-Runoff Analysis

검색결과 786건 처리시간 0.025초

공간 분포된 강우를 이용한 유출 해석 (Runoff Analysis using Spatially Distributed Rainfall Data)

  • 이종형;윤석환
    • 한국농공학회논문집
    • /
    • 제47권6호
    • /
    • pp.3-14
    • /
    • 2005
  • Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.

레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정 (Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution)

  • 김연수;장권희;김병식;김형수
    • 한국습지학회지
    • /
    • 제13권1호
    • /
    • pp.105-116
    • /
    • 2011
  • 최근 몇 년간 기후변화에 의해 기상이변이 발생하고 있으며 이에 따른 집중호우로 인한 홍수피해가 심각하게 증가하고 있다. 이러한 피해를 저감하기 위한 수문기상학적 요소와 특성인자들의 정확한 상호 연관성 규명과 공간적 변동성 해석은 강우-유출 모형에서 발생하는 불확실성을 감소시키는데 중요한 요소로 작용하게 된다. 이에 본 연구에서는 레이더강우 격자 해상도와 지형인자 격자 해상도에 따라 강우-유출모형이 어떻게 반응하는지 분석하였으며, 가-분포 강우-유출 모형인 ModClark 모형을 이용하여 강원도 인제군의 내린천 유역을 대상으로 광덕산 레이더자료를 이용하였다. ModClark 모형 구성을 위한 GIS 지형공간 자료는 30m, 150m, 250m, 350m 격자크기의 DEM을 사용하였으며, 2006년 7월 14일부터 7월 17일까지의 관측레이더 강우자료를 500m, 1km, 2km, 5km, 10km 사용하여 유출모의를 실시하고, 각각의 격자해상도에 따른 모의 결과를 비교하기 위해 유출 수문곡선을 작성하고 유출량 변화를 모의하였다. 분석 결과 첨두유량 및 유출체적에 대해서는 DEM 30m~150m, 레이더강우 500m~2km 크기의 격자일 때 가장 최적의 유출 모의를 한 것으로 분석되었으며, 통계적 분석에 의한 분석결과에서는 모든 DEM 격자는 레이더강우 격자가 500m인 경우, 모든 레이더강우 격자는 DEM 30m인 경우에 모형의 적합성이 높은 것으로 나타났고, 민감도 산정 결과 지수 등급이 높은 DEM이 분포형 모형의 결과 값에 큰 영향을 주는 것으로 분석되었다. 최근 집중형 모형에서 분포형 모형을 이용한 강우-유출해석이 이루어지고 있기에 모델링 구성을 위한 효율적인 의사결정의 기준으로 활용될 수 있을 것으로 기대된다.

강우-유출 모형의 상태변수와 수문기상변량과의 상관성 분석 (A correlation analysis between state variables of rainfall-runoff model and hydrometeorological variables)

  • 심은증;오랑치맥 솜야;이예린;문영일;이주헌;권현한
    • 한국수자원학회논문집
    • /
    • 제54권12호
    • /
    • pp.1295-1304
    • /
    • 2021
  • 수자원의 효율적인 이용과 관리를 위해서는 기본적으로 강우-유출에 대한 신뢰성 있는 해석이 필요하지만 이를 위한 연속적인 수문자료가 부족하고, 실측 및 모형 등을 통한 강우-유출자료의 확보는 여전히 요원한 실정이다. 특히 미계측 유역의 경우는 합리적인 강우-유출 모의 개선의 일환으로 모형 적용시 필요한 매개변수를 계측유역에서 미계측 유역으로 전이하는 지역화 방안이 활용되고 있다. 본 연구에서는 하천 내 미계측 유역 또는 가뭄모니터링이 필요한 지점에서 GR4J 모형을 선정하여 강우-유출과정의 상태변수를 추출하고 SCEM-UA 기법을 이용한 매개변수 최적화를 진행하였다. 모형을 통해 획득한 유역특성인자와 매개변수 상관성 분석을 위해 Copula 함수를 이용하여 지역화하였으며 미계측 유역에 대한 강우-유출 분석을 수행하였다. 분석과정에서 대상 유역의 중간상태변수를 추출하고 이를 수문변량 인자인 하천수위와 지하수위에 대해 각각의 상관성을 분석하였다. 나아가 강우-유출 모의 과정에서 GR4J 모형의 상태변수를 산출하고 지수화시켜 수문학적 가뭄지수(SSDI)를 산정하였으며 이를 대표 가뭄지수인 SPI와 비교분석하여 산정된 가뭄지수의 수문학적 적합성 평가를 수행하였으며 이를 토대로 미계측 유역에서의 가뭄 모니터링 및 가뭄정보제공 체계구축과 활용 가능성을 확인할 수 있었다.

홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 - (Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District -)

  • 김상호;김한중;홍성구;박창언;이남호
    • 한국농공학회논문집
    • /
    • 제49권4호
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

빗물이용의 수문학적 평가: 1. 수문해석 (Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis)

  • 유철상;김경준;윤주환
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Correlation Analysis on the Runoff Pollutants from a Small Plot Unit in an Agricultural Area

  • Kang, Meea;Choi, Byoung-Woo;Lee, Jae-Kwan
    • Environmental Engineering Research
    • /
    • 제15권4호
    • /
    • pp.191-195
    • /
    • 2010
  • This study was carried out to investigate the important factors relating to runoff and pollutant loads in a plot unit located in an agricultural area. Of the precipitation parameters, such as total precipitation, days since last rainfall (ADD, the rainfall was more than 10mm) and average rainfall intensity on runoff, the strongest effect was obtained due to total precipitation, but the rainfall intensity showed a slightly positive correlation. It was expected that both variables, i.e. total precipitation and rainfall intensity, would lead to the generation of greater runoff. In contrast, runoff was negatively correlated with ADD, which is understandable because more infiltration and less runoff would be expected after a long dry period. The TSS load varied greatly, between 75.6 and $5.18{\times}10^4g$, per event. With the exception of TN, the TSS, BOD, COD and TP loads were affected by runoff. The correlations of these items were proportional to the runoff volume, with correlation coefficients (r) greater than 0.70, which are suitable for use as NPS model data. The TSS load showed very good relationships with organics (BOD & COD) and nutrients (TN & TP), with correlation coefficients greater than 0.79. Therefore, the removal of TSS is a promising factor for protecting water basins.

인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석 (Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation)

  • 김태한;박정현;최부헌
    • 한국환경복원기술학회지
    • /
    • 제22권6호
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

포도밭에 대한 비점오염원 유출특성 해석 (Analysis of Nonpoint Sources Runoff Characteristic for the Vineyard Areas)

  • 윤영삼;이상협;유재정;이재관
    • 한국환경과학회지
    • /
    • 제20권3호
    • /
    • pp.361-372
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas for two years. Effluents were monitored to calculate the EMCs and runoff loads of each pollutant. The runoff characteristics for nonpoint sources from vineyards were also inspected based on independent variables that affect runoff such as rainfall and rainfall intensity. The average runoff loads of each pollutant from vineyard_A and vineyard_B were found as follows: BOD 39.13 mg/$m^2$, COD 112.13 mg/$m^2$, TOC 54.98 mg/$m^2$, SS 1,681.8 mg/$m^2$, TN 18.29 mg/$m^2$, and TP 4.06 mg/$m^2$, which indicates that the COD's runoff load was especially high. The average EMCs from vineyard_A and vineyard_B, which represents the quality of rainfall effluent, were also analyzed: BOD 3.5 mg/L, COD 11.5 mg/L, TOC 5.2 mg/L, SS 211.7 mg/L, TN 1.774 mg/L, and TP 0.324 mg/L. This suggested that the COD, as an indicator of organic pollutants, is high in terms of EMCs as well. As rainfall increased, the EMCs of BOD, COD, TOC and SS kept turning upward. At a point, however, the high rainfall brought about dilution effects and began to push down the EMCs. Higher rainfall intensities led to the increase in the EMCs that displays the convergence of rainfall. Low rainfall intensities also raised pollutant concentrations, although the concentrations themselves were slightly different among pollutants.

실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의 (Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator)

  • 신민환;최용훈;서지연;이재운;최중대
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2009년도 학술발표회 초록집
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

제주도 화산도서에서 도시화유역 내수처리시스템 설계를 위한 유출특성분석 (A Runoff Characteristics Analysis for the Design of Interior Drainage Systems at Urbanization Catchment in the Cheju Volcanic Island)

  • 김성원
    • 한국농공학회지
    • /
    • 제41권1호
    • /
    • pp.39-51
    • /
    • 1999
  • This study has an object to evaluate runoff characteristics with ILLUDAS model and SWMM owing to each rainfall distribution type of Huff's quartile and each rainfall duration time of 30 ,60, 120 and 180 minutes. As a result of this study, Type-Ⅰ Extreme (TIE) rainfall distribution pattern with Huff's 2nd quartile is adequate for Cheju volcanic island . To decide optimal rain fall duration , time of concentration and critical duration should be compared and analyzed each other. In this study, 30 and 120 miniutes were suggeste to iptiaml duration time of A and B study basins. It is concluded that the magnitude of peak runoff discharge is maximum with Huff's 4th quartile, and that of total runoff volume is maximum with Huff's 4th quartile for ILLUDAS model and with Huff's 1st quartile for SWMM. As rainfall duration time increasing is increasing . Also in case of total runoff volume, volumen by SWMM is less than by ILLUDAS model as to variation ratio of total runoff volume in A and B study basin. Therefore, the resulots of this study canb e sued as basic data in determining adequate rainfoal duration time and rainfall distribution type and used for urban drainage systems analysis and design at small urbanization catchment is Cheju volcanic island.

  • PDF