• Title/Summary/Keyword: Rainfall-Runoff Analysis

Search Result 785, Processing Time 0.034 seconds

Runoff Analysis using Spatially Distributed Rainfall Data (공간 분포된 강우를 이용한 유출 해석)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.3-14
    • /
    • 2005
  • Accurate estimation of the spatial distribution of rainfall is critical to the successful modeling of hydrologic processes. The objective of this study is to evaluate the applicability of spatially distributed rainfall data. Spatially distributed rainfall was calculated using Kriging method and Thiessen method. The application of spatially distributed rainfall was appreciated to the runoff response from the watershed. The results showed that for each method the coefficient of determination for observed hydrograph was $0.92\~0.95$ and root mean square error was $9.78\~10.89$ CMS. Ordinary Kriging method showed more exact results than Simple Kriging, Universal Kriging and Thiessen method, based on comparison of observed and simulated hydrograph. The coefncient of determination for the observed peak flow was 0.9991 and runoff volume was 0.9982. The accuracy of rainfall-runoff prediction depends on the extent of spatial rainfall variability.

Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution (레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정)

  • Kim, Yon-Soo;Chang, Kwon-Hee;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall -runoff model. In this study, radar rainfall grid resolution and grid resolution depending on the topographic factor in rainfall - runoff models were how to respond. In this study, semi-distribution of rainfall-runoff model using the model ModClark of Inje, Gangwon Naerin watershed was used as Gwangdeok RADAR data. The completed ModClark model was calibrated for use DEM of cell size of 30m, 150m, 250m, 350m was chosen for the application, and runoff simulated by the RADAR rainfall data of 500m, 1km, 2km, 5km, 10km from 14 to 17 on July, 2006. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, it was highly runoff simulation if the cell size is DEM 30m~150m, RADAR rainfall 500m~2km for peak flow and runoff volume. In the statistical analysis results, if every DEM cell size are 500m and if RADAR rainfall cell size is 30m, relevance of model was higher. Result of sensitivity assessment, high index DEM give effect to result of distributed model. Recently, rainfall -runoff analysis is used lumped model to distributed model. So, this study is expected to make use of the efficiently decision criteria for configurated models.

A correlation analysis between state variables of rainfall-runoff model and hydrometeorological variables (강우-유출 모형의 상태변수와 수문기상변량과의 상관성 분석)

  • Shim, Eunjeung;Uranchimeg, Sumiya;Lee, Yearin;Moon, Young-Il;Lee, Joo-Heon;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1295-1304
    • /
    • 2021
  • For the efficient use and management of water resources, a reliable rainfall-runoff analysis is necessary. Still, continuous hydrological data and rainfall-runoff data are insufficient to secure through measurements and models. In particular, as part of the reasonable improvement of a rainfall-runoff model in the case of an ungauged watershed, regionalization is being used to transfer the parameters necessary for the model application to the ungauged watershed. In this study, the GR4J model was selected, and the SCEM-UA method was used to optimize parameters. The rainfall-runoff model for the analysis of the correlation between watershed characteristics and parameters obtained through the model was regionalized by the Copula function, and rainfall-runoff analysis with the regionalized parameters was performed on the ungauged watershed. In the process, the intermediate state variables of the rainfall-runoff model were extracted, and the correlation analysis between water level and the ground water level was investigated. Furthermore, in the process of rainfall-runoff analysis, the Standardized State variable Drought Index (SSDI) was calculated by calculating and indexing the state variables of the GR4J model. and the calculated SSDI was compared with the standardized Precipitation index (SPI), and the hydrological suitability evaluation of the drought index was performed to confirm the possibility of drought monitoring and application in the ungauged watershed.

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis (빗물이용의 수문학적 평가: 1. 수문해석)

  • Yoo, Chulsang;Kim, Kyoungjun;Yun, Zuhwan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.2
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Correlation Analysis on the Runoff Pollutants from a Small Plot Unit in an Agricultural Area

  • Kang, Meea;Choi, Byoung-Woo;Lee, Jae-Kwan
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.191-195
    • /
    • 2010
  • This study was carried out to investigate the important factors relating to runoff and pollutant loads in a plot unit located in an agricultural area. Of the precipitation parameters, such as total precipitation, days since last rainfall (ADD, the rainfall was more than 10mm) and average rainfall intensity on runoff, the strongest effect was obtained due to total precipitation, but the rainfall intensity showed a slightly positive correlation. It was expected that both variables, i.e. total precipitation and rainfall intensity, would lead to the generation of greater runoff. In contrast, runoff was negatively correlated with ADD, which is understandable because more infiltration and less runoff would be expected after a long dry period. The TSS load varied greatly, between 75.6 and $5.18{\times}10^4g$, per event. With the exception of TN, the TSS, BOD, COD and TP loads were affected by runoff. The correlations of these items were proportional to the runoff volume, with correlation coefficients (r) greater than 0.70, which are suitable for use as NPS model data. The TSS load showed very good relationships with organics (BOD & COD) and nutrients (TN & TP), with correlation coefficients greater than 0.79. Therefore, the removal of TSS is a promising factor for protecting water basins.

Analysis of Rainfall Runoff Delay Effect of Vegetation Unit-type LID System through Rainfall Simulator-based Probable Rainfall Recreation (인공강우기 기반 확률강우재현을 통한 식생유니트형 LID시스템의 우수유출지연 효과분석)

  • Kim, Tae-Han;Park, Jeong-Hyun;Choi, Boo-Hun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.115-124
    • /
    • 2019
  • In a climate change environment where heat damage and drought occur during a rainy season such as in 2018, a vegetation-based LID system that enables disaster prevention as well as environment improvement is suggested in lieu of an installation-type LID system that is limited to the prevention of floods. However, the quantification of its performance as against construction cost is limited. This study aims to present an experiment environment and evaluation method on quantitative performance, which is required in order to disseminate the vegetation-based LID system. To this end, a 3rd quartile huff time distribution mass curve was generated for 20-year frequency, 60-minute probable rainfall of 68mm/hr in Cheonan, and effluent was analyzed by recreating artificial rainfall. In order to assess the reliability of the rainfall event simulator, 10 repeat tests were conducted at one-minute intervals for 20 minutes with minimum rainfall intensity of 22.29mm/hr and the maximum rainfall intensity of 140.69mm/hr from the calculated probable rainfall. Effective rainfall as against influent flow was 21.83mm/hr (sd=0.17~1.36, n=20) on average at the minimum rainfall intensity and 142.27mm/hr (sd=1.02~3.25, n=20) on average at the maximum rainfall intensity. In artificial rainfall recreation experiments repeated for three times, the most frequent quartile was found to be the third quartile, which is around 40 minutes after beginning the experiment. The peak flow was observed 70 minutes after beginning the experiment in the experiment zone and after 50 minutes in the control zone. While the control zone recorded the maximum runoff intensity of 2.26mm/min(sd=0.25) 50 minutes after beginning the experiment, the experiment zone recorded the maximum runoff intensity of 0.77mm/min (sd=0.15) 70 minutes after beginning the experiment, which is 20 minutes later than the control zone. Also, the maximum runoff intensity of the experiment zone was 79.6% lower than that of the control zone, which confirmed that vegetation unit-type LID system had rainfall runoff reduction and delay effects. Based on the above findings, the reliability of a lab-level rainfall simulator for monitoring the vegetation-based LID system was reviewed, and maximum runoff intensity reduction and runoff time delay were confirmed. As a result, the study presented a performance evaluation method that can be applied to the pre-design of the vegetation-based LID system for rainfall events on a location before construction.

Analysis of Nonpoint Sources Runoff Characteristic for the Vineyard Areas (포도밭에 대한 비점오염원 유출특성 해석)

  • Yoon, Young-Sam;Lee, Sang-Hyeup;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.361-372
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff by rainfall type in orchard areas for two years. Effluents were monitored to calculate the EMCs and runoff loads of each pollutant. The runoff characteristics for nonpoint sources from vineyards were also inspected based on independent variables that affect runoff such as rainfall and rainfall intensity. The average runoff loads of each pollutant from vineyard_A and vineyard_B were found as follows: BOD 39.13 mg/$m^2$, COD 112.13 mg/$m^2$, TOC 54.98 mg/$m^2$, SS 1,681.8 mg/$m^2$, TN 18.29 mg/$m^2$, and TP 4.06 mg/$m^2$, which indicates that the COD's runoff load was especially high. The average EMCs from vineyard_A and vineyard_B, which represents the quality of rainfall effluent, were also analyzed: BOD 3.5 mg/L, COD 11.5 mg/L, TOC 5.2 mg/L, SS 211.7 mg/L, TN 1.774 mg/L, and TP 0.324 mg/L. This suggested that the COD, as an indicator of organic pollutants, is high in terms of EMCs as well. As rainfall increased, the EMCs of BOD, COD, TOC and SS kept turning upward. At a point, however, the high rainfall brought about dilution effects and began to push down the EMCs. Higher rainfall intensities led to the increase in the EMCs that displays the convergence of rainfall. Low rainfall intensities also raised pollutant concentrations, although the concentrations themselves were slightly different among pollutants.

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

A Runoff Characteristics Analysis for the Design of Interior Drainage Systems at Urbanization Catchment in the Cheju Volcanic Island (제주도 화산도서에서 도시화유역 내수처리시스템 설계를 위한 유출특성분석)

  • 김성원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.1
    • /
    • pp.39-51
    • /
    • 1999
  • This study has an object to evaluate runoff characteristics with ILLUDAS model and SWMM owing to each rainfall distribution type of Huff's quartile and each rainfall duration time of 30 ,60, 120 and 180 minutes. As a result of this study, Type-Ⅰ Extreme (TIE) rainfall distribution pattern with Huff's 2nd quartile is adequate for Cheju volcanic island . To decide optimal rain fall duration , time of concentration and critical duration should be compared and analyzed each other. In this study, 30 and 120 miniutes were suggeste to iptiaml duration time of A and B study basins. It is concluded that the magnitude of peak runoff discharge is maximum with Huff's 4th quartile, and that of total runoff volume is maximum with Huff's 4th quartile for ILLUDAS model and with Huff's 1st quartile for SWMM. As rainfall duration time increasing is increasing . Also in case of total runoff volume, volumen by SWMM is less than by ILLUDAS model as to variation ratio of total runoff volume in A and B study basin. Therefore, the resulots of this study canb e sued as basic data in determining adequate rainfoal duration time and rainfall distribution type and used for urban drainage systems analysis and design at small urbanization catchment is Cheju volcanic island.

  • PDF