• Title/Summary/Keyword: Rainfall prediction

Search Result 567, Processing Time 0.031 seconds

Development of an Integrated Forecasting and Warning System for Abrupt Natural Disaster using rainfall prediction data and Ubiquitous Sensor Network(USN) (농촌지역 돌발재해 피해 경감을 위한 USN기반 통합예경보시스템 (ANSIM)의 개발)

  • Bae, Seung-Jong;Bae, Won-Gil;Bae, Yeon-Joung;Kim, Seong-Pil;Kim, Soo-Jin;Seo, Il-Hwan;Seo, Seung-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.171-179
    • /
    • 2015
  • The objectives of this research have been focussed on 1) developing prediction techniques for the flash flood and landslide based on rainfall prediction data in agricultural area and 2) developing an integrated forecasting system for the abrupt disasters using USN based real-time disaster sensing techniques. This study contains following steps to achieve the objective; 1) selecting rainfall prediction data, 2) constructing prediction techniques for flash flood and landslide, 3) developing USN and communication network protocol for detecting the abrupt disaster suitable for rural area, & 4) developing mobile application and SMS based early warning service system for local resident and tourist. Local prediction model (LDAPS, UM1.5km) supported by Korean meteorological administration was used for the rainfall prediction by considering spatial and temporal resolution. NRCS TR-20 and infinite slope stability analysis model were used to predict flash flood and landslide. There are limitations in terms of communication distance and cost using Zigbee and CDMA which have been used for existing disaster sensors. Rural suitable sensor-network module for water level and tilting gauge and gateway based on proprietary RF network were developed by consideration of low-cost, low-power, and long-distance for communication suitable for rural condition. SMS & mobile application forecasting & alarming system for local resident and tourist was set up for minimizing damage on the critical regions for abrupt disaster. The developed H/W & S/W for integrated abrupt disaster forecasting & alarming system was verified by field application.

Water Level Prediction on the Golok River Utilizing Machine Learning Technique to Evaluate Flood Situations

  • Pheeranat Dornpunya;Watanasak Supaking;Hanisah Musor;Oom Thaisawasdi;Wasukree Sae-tia;Theethut Khwankeerati;Watcharaporn Soyjumpa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.31-31
    • /
    • 2023
  • During December 2022, the northeast monsoon, which dominates the south and the Gulf of Thailand, had significant rainfall that impacted the lower southern region, causing flash floods, landslides, blustery winds, and the river exceeding its bank. The Golok River, located in Narathiwat, divides the border between Thailand and Malaysia was also affected by rainfall. In flood management, instruments for measuring precipitation and water level have become important for assessing and forecasting the trend of situations and areas of risk. However, such regions are international borders, so the installed measuring telemetry system cannot measure the rainfall and water level of the entire area. This study aims to predict 72 hours of water level and evaluate the situation as information to support the government in making water management decisions, publicizing them to relevant agencies, and warning citizens during crisis events. This research is applied to machine learning (ML) for water level prediction of the Golok River, Lan Tu Bridge area, Sungai Golok Subdistrict, Su-ngai Golok District, Narathiwat Province, which is one of the major monitored rivers. The eXtreme Gradient Boosting (XGBoost) algorithm, a tree-based ensemble machine learning algorithm, was exploited to predict hourly water levels through the R programming language. Model training and testing were carried out utilizing observed hourly rainfall from the STH010 station and hourly water level data from the X.119A station between 2020 and 2022 as main prediction inputs. Furthermore, this model applies hourly spatial rainfall forecasting data from Weather Research and Forecasting and Regional Ocean Model System models (WRF-ROMs) provided by Hydro-Informatics Institute (HII) as input, allowing the model to predict the hourly water level in the Golok River. The evaluation of the predicted performances using the statistical performance metrics, delivering an R-square of 0.96 can validate the results as robust forecasting outcomes. The result shows that the predicted water level at the X.119A telemetry station (Golok River) is in a steady decline, which relates to the input data of predicted 72-hour rainfall from WRF-ROMs having decreased. In short, the relationship between input and result can be used to evaluate flood situations. Here, the data is contributed to the Operational support to the Special Water Resources Management Operation Center in Southern Thailand for flood preparedness and response to make intelligent decisions on water management during crisis occurrences, as well as to be prepared and prevent loss and harm to citizens.

  • PDF

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Application of Self-Organizing Map Theory for the Development of Rainfall-Runoff Prediction Model (강우-유출 예측모형 개발을 위한 자기조직화 이론의 적용)

  • Park, Sung Chun;Jin, Young Hoon;Kim, Yong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.389-398
    • /
    • 2006
  • The present study compositely applied the self-organizing map (SOM), which is a kind of artificial neural networks (ANNs), and the back propagation algorithm (BPA) for the rainfall-runoff prediction model taking account of the irregular variation of the spatiotemporal distribution of rainfall. To solve the problems from the previous studies on ANNs, such as the overestimation of low flow during the dry season, the underestimation of runoff during the flood season and the persistence phenomenon, in which the predicted values continuously represent the preceding runoffs, we introduced SOM theory for the preprocessing in the prediction model. The theory is known that it has the pattern classification ability. The method proposed in the present research initially includes the classification of the rainfall-runoff relationship using SOM and the construction of the respective models according to the classification by SOM. The individually constructed models used the data corresponding to the respectively classified patterns for the runoff prediction. Consequently, the method proposed in the present study resulted in the better prediction ability of runoff than that of the past research using the usual application of ANNs and, in addition, there were no such problems of the under/over-estimation of runoff and the persistence.

Survey of spatial and temporal landslide prediction methods and techniques

  • An, Hyunuk;Kim, Minseok;Lee, Giha;Viet, Tran The
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.507-521
    • /
    • 2016
  • Landslides are one of the most common natural hazards causing significant damage and casualties every year. In Korea, the increasing trend in landslide occurrence in recent decades, caused by climate change, has set off an alarm for researchers to find more reliable methods for landslide prediction. Therefore, an accurate landslide-susceptibility assessment is fundamental for preventing landslides and minimizing damages. However, analyzing the stability of a natural slope is not an easy task because it depends on numerous factors such as those related to vegetation, soil properties, soil moisture distribution, the amount and duration of rainfall, earthquakes, etc. A variety of different methods and techniques for evaluating landslide susceptibility have been proposed, but up to now no specific method or technique has been accepted as the standard method because it is very difficult to assess different methods with entirely different intrinsic and extrinsic data. Landslide prediction methods can fall into three categories: empirical, statistical, and physical approaches. This paper reviews previous research and surveys three groups of landslide prediction methods.

Measurement of Rainfall Characteristics and Rain-Attenuation at 38 GHz in Worst Months Affected by El Nino Signal in 1998

  • Jang Won-Gyu;Choi Jae-Hoon
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.189-192
    • /
    • 2005
  • The measurement of unique rainfall phenomenon and rain attenuation on 38 GHz terrestrial links at South Korea in 1998 is presented. It was one of the most severe rainfall years at the measured region due to increased EI Nino signal. The rainfall rate exceeded at $0.01\%$ was 97.4 mm/h during a worst month and annual rate was 63.5 mm/h. Experimentally measured results have been compared with some models and found that the rain attenuation by system level was underestimated by the existing prediction models. As it was measured only three months, further study and measurement of rainfall and rain attenuation in this region are needed for stable millimeter-wave system operation at all times.

The study for water level estimation by rainfall intensity of the upper region in the han river (한강 상류유역의 강우강도에 따른 수위 예측 연구)

  • Choi, Han-Kuy;Choe, Hyun-jong;Baek, Hyo-Seon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.91-98
    • /
    • 2010
  • Recently, there has been enormous damage due to river floodings caused by localized heavy rains. The direct discharge triggered by those torrential rains inflicts severe property damage on the residents of nearby areas. To minimize the possibility of river floodings in case of heavy rains and to predict the possible damage, the management of existing rainfall and water level observatories should be checked and prediction methods based on the characteristics of water usage and floodgate of nearby rivers must be further analyzed. Therefore, this research analyzed the water level change predictions on different spots with a regression equation of rainfall and water levels, using the observation data of the water level observatory in Jeongseon-gun, Gangwon Province and the rainfall observatory which are located on the upper region of the Han river.

  • PDF

Classification of basin characteristics related to inundation using clustering (군집분석을 이용한 침수관련 유역특성 분류)

  • Lee, Han Seung;Cho, Jae Woong;Kang, Ho seon;Hwang, Jeong Geun;Moon, Hae Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.96-96
    • /
    • 2020
  • In order to establish the risk criteria of inundation due to typhoons or heavy rainfall, research is underway to predict the limit rainfall using basin characteristics, limit rainfall and artificial intelligence algorithms. In order to improve the model performance in estimating the limit rainfall, the learning data are used after the pre-processing. When 50.0% of the entire data was removed as an outlier in the pre-processing process, it was confirmed that the accuracy is over 90%. However, the use rate of learning data is very low, so there is a limitation that various characteristics cannot be considered. Accordingly, in order to predict the limit rainfall reflecting various watershed characteristics by increasing the use rate of learning data, the watersheds with similar characteristics were clustered. The algorithms used for clustering are K-Means, Agglomerative, DBSCAN and Spectral Clustering. The k-Means, DBSCAN and Agglomerative clustering algorithms are clustered at the impervious area ratio, and the Spectral clustering algorithm is clustered in various forms depending on the parameters. If the results of the clustering algorithm are applied to the limit rainfall prediction algorithm, various watershed characteristics will be considered, and at the same time, the performance of predicting the limit rainfall will be improved.

  • PDF

Rainfall-induced shallow landslide prediction considering the influence of 1D and 3D subsurface flows

  • Viet, Tran The;Lee, Giha;An, Hyunuk;Kim, Minseok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.260-260
    • /
    • 2017
  • This study aims to compare the performance of TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope-stability model) and TiVaSS (Time-variant Slope Stability model) in the prediction of rainfall-induced shallow landslides. TRIGRS employs one-dimensional (1-D) subsurface flow to simulate the infiltration rate, whereas a three-dimensional (3-D) model is utilized in TiVaSS. The former has been widely used in landslide modeling, while the latter was developed only recently. Both programs are used for the spatiotemporal prediction of shallow landslides caused by rainfall. The present study uses the July 2011 landslide event that occurred in Mt. Umyeon, Seoul, Korea, for validation. The performance of the two programs is evaluated by comparison with data of the actual landslides in both location and timing by using a landslide ratio for each factor of safety class ( index), which was developed for addressing point-like landslide locations. In addition, the influence of surface flow on landslide initiation is assessed. The results show that the shallow landslides predicted by the two models have characteristics that are highly consistent with those of the observed sliding sites, although the performance of TiVaSS is slightly better. Overland flow affects the buildup of the pressure head and reduces the slope stability, although this influence was not significant in this case. A slight increase in the predicted unstable area from 19.30% to 19.93% was recorded when the overland flow was considered. It is concluded that both models are suitable for application in the study area. However, although it is a well-established model requiring less input data and shorter run times, TRIGRS produces less accurate results.

  • PDF

An Offer of a Procedure Calculating Hourly Rainfall Excess by Use of Horton Infiltration Model in a Basin (유역 단위 Horton 침투모형을 적용한 시간단위 초과우량 산출 절차 제시)

  • Yoo, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.533-541
    • /
    • 2010
  • It is basic for a flood prediction to calculate direct runoff from rainfall in a basin by the rainfall-runoff model. The direct runoff is calculated from rainfall excess or effective rainfall based on a rainfall-runoff model. The total rainfall minus rainfall loss equals rainfall excess with time. This loss can be treated equal to an infiltration loss under the assumption that the infiltration is a major one among the losses in the rainfall-runoff model. Practically obtaining the infiltration loss $\Phi$ index method, W index method or modified ones of these have been used. In this study it is assumed the loss of rainfall in a basin be a well-known Horton infiltration mechanism. And in case that the parameter set is given in the Horton infiltration model a procedure and assumption for calculating hourly infiltration loss and rainfall excess are offered and the results of its application are compared with those of $\Phi$ index method. By this study it is well shown the value of Horton infiltration function is exponentially decay with time as the Horton infiltration mechanism.