• Title/Summary/Keyword: Rainfall Disaggregation

Search Result 15, Processing Time 0.023 seconds

Performance Evaluation of Rainfall Disaggregation according to Temporal Scale of Rainfall Data (강우자료의 시간해상도에 따른 강우 분해 성능 평가)

  • Lee, Jeonghoon;Jang, Juhyoung;Kim, Sangdan
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.345-352
    • /
    • 2018
  • In this study, rainfall data with various temporal scales (3-, 6-, 12-, 24-hr) are disaggregated into 1-hourly rainfall data to evaluate the performance of rainfall disaggregation technique. The rainfall disaggregation technique is based on a database generated by the stochastic point rainfall model, the Neyman-Scott Rectangular Pulse Model (NSRPM). Performance evaluation is carried out using July rainfall data of Ulsan, Changwon, Busan and Milyang weather stations in Korea. As a result, the rainfall disaggregation technique showed excellent performance that can consider not only the major statistics of rainfall but also the spatial correlation. It also indirectly shows the uncertainty of future climate change scenarios with daily temporal scale. The rainfall disaggregation technique is expected to disaggregate the future climate change scenarios, and to be effective in the future watershed management.

Applicability of a Multiplicative Random Cascade Model for Disaggregation of Forecasted Rainfalls (예보강우 시간분해를 위한 Multiplicative Cascade 모형의 적용성 평가)

  • Kim, Daeha;Yoon, Sun-Kwon;Kang, Moon Seong;Lee, Kyung-do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.91-99
    • /
    • 2016
  • High resolution rainfall data at 1-hour or a finer scale are essential for reliable flood analysis and forecasting; nevertheless, many observations, forecasts, and climate projections are still given at coarse temporal resolutions. This study aims to evaluate a chaotic method for disaggregation of 6-hour rainfall data sets so as to apply operational 6-hour rainfall forecasts of the Korean Meteorological Association to flood models. We computed parameters of a state-of-the-art multiplicative random cascade model with two combinations of cascades, namely uniform splitting and diversion, using rainfall observations at Seoul station, and compared statistical performance. We additionally disaggregated 6-hour rainfall time series at 58 stations with the uniform splitting and evaluated temporal transferability of the parameters and changes in multifractal properties. Results showed that the uniform splitting outperformed the diversion in reproduction of observed statistics, and hence is better to be used for disaggregation of 6-hour rainfall forecasts. We also found that multifractal properties of rainfall observations has adequate temporal consistency with an indication of gradually increasing rainfall intensity across South Korea.

Chaotic Disaggregation of Daily Rainfall Time Series (카오스를 이용한 일 강우자료의 시간적 분해)

  • Kyoung, Min-Soo;Sivakumar, Bellie;Kim, Hung-Soo;Kim, Byung-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.9
    • /
    • pp.959-967
    • /
    • 2008
  • Disaggregation techniques are widely used to transform observed daily rainfall values into hourly ones, which serve as important inputs for flood forecasting purposes. However, an important limitation with most of the existing disaggregation techniques is that they treat the rainfall process as a realization of a stochastic process, thus raising questions on the lack of connection between the structure of the models on one hand and the underlying physics of the rainfall process on the other. The present study introduces a nonlinear deterministic (and specifically chaotic) framework to study the dynamic characteristics of rainfall distributions across different temporal scales (i.e. weights between scales), and thus the possibility of rainfall disaggregation. Rainfall data from the Seoul station (recorded by the Korea Meteorological Administration) are considered for the present investigation, and weights between only successively doubled resolutions (i.e., 24-hr to 12-hr, 12-hr to 6-hr, 6-hr to 3-hr) are analyzed. The correlation dimension method is employed to investigate the presence of chaotic behavior in the time series of weights, and a local approximation technique is employed for rainfall disaggregation. The results indicate the presence of chaotic behavior in the dynamics of weights between the successively doubled scales studied. The modeled (disaggregated) rainfall values are found to be in good agreement with the observed ones in their overall matching (e.g. correlation coefficient and low mean square error). While the general trend (rainfall amount and time of occurrence) is clearly captured, an underestimation of the maximum values are found.

Assessment of Frequency Analysis using Daily Rainfall Data of HadGEM3-RA Climate Model (HadGEM3-RA 기후모델 일강우자료를 이용한 빈도해석 성능 평가)

  • Kim, Sunghun;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.51-60
    • /
    • 2019
  • In this study, we performed At-site Frequency Analysis(AFA) and Regional Frequency Analysis(RFA) using the observed and climate change scenario data, and the relative root mean squared error(RMMSE) was compared and analyzed for both approaches through Monte Carlo simulation. To evaluate the rainfall quantile, the daily rainfall data were extracted for 615 points in Korea from HadGEM3-RA(12.5km) climate model data, one of the RCM(Regional Climate Model) data provided by the Korea Meteorological Administration(KMA). Quantile mapping(QM) and inverse distance squared methods(IDSM) were applied for bias correction and spatial disaggregation. As a result, it is shown that the RFA estimates more accurate rainfall quantile than AFA, and it is expected that the RFA could be reasonable when estimating the rainfall quantile based on climate change scenarios.

Stochastic disaggregation of daily rainfall based on K-Nearest neighbor resampling method (K번째 최근접 표본 재추출 방법에 의한 일 강우량의 추계학적 분해에 대한 연구)

  • Park, HeeSeong;Chung, GunHui
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.4
    • /
    • pp.283-291
    • /
    • 2016
  • As the infrastructures and populations are the condensed in the mega city, urban flood management becomes very important due to the severe loss of lives and properties. For the more accurate calculation of runoff from the urban catchment, hourly or even minute rainfall data have been utilized. However, the time steps of the measured or forecasted data under climate change scenarios are longer than hourly, which causes the difficulty on the application. In this study, daily rainfall data was disaggregated into hourly using the stochastic method. Based on the historical hourly precipitation data, Gram Schmidt orthonormalization process and K-Nearest Neighbor Resampling (KNNR) method were applied to disaggregate daily precipitation into hourly. This method was originally developed to disaggregate yearly runoff data into monthly. Precipitation data has smaller probability density than runoff data, therefore, rainfall patterns considering the previous and next days were proposed as 7 different types. Disaggregated rainfall was resampled from the only same rainfall patterns to improve applicability. The proposed method was applied rainfall data observed at Seoul weather station where has 52 years hourly rainfall data and the disaggregated hourly data were compared to the measured data. The proposed method might be applied to disaggregate the climate change scenarios.

An Hourly Extreme Data Estimation Method Developed Using Nonstationary Bayesian Beta Distribution (비정상성 Bayesian Beta 분포를 이용한 시 단위 극치자료 추정기법 개발)

  • Kim, Yong-Tak;Kim, Jin-Young;Lee, Jae Chul;Kwon, Hyun-Han
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.256-272
    • /
    • 2017
  • Extreme rainfall has become more frequent over the Korean peninsula in recent years, causing serious damages. In a changing climate, traditional approaches based on historical records of rainfall and on the stationary assumption can be inadequate and lead to overestimate (or underestimate) the design rainfalls. A main objective of this study is to develop a stochastic disaggregation method of seasonal rainfall to hourly extreme rainfall, and offer a way to derive the nonstationary IDF curves. In this study, we propose a novel approach based on a Four-Parameter Beta (4P-beta) distribution to estimate the nonstationary IDF curves conditioned on the observed (or simulated) seasonal rainfall, which becomes the time-varying upper bound of the 4P beta distribution. Moreover, this study employed a Bayesian framework that provides a better way to take into account the uncertainty in the model parameters. The proposed model showed a comparable design rainfall to that of GEV distribution under the stationary assumption. As a nonstationary rainfall frequency model, the proposed model can effectively translate the seasonal variation into the sub-daily extreme rainfall.

Climate Change effect on Rainfall Frequency analysis using high resolution RCM Data (고해상도의 RCM 자료를 이용한 기후변화가 강우빈도 분석에 미치는 영향)

  • Kim, Byung-Sik;Kim, Bo-Kyung;Kwon, Hyun-Ha;Yoon, Seok-Young
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.224-228
    • /
    • 2008
  • 2007년 세계경제포럼(WEF)은 우리가 직면한 최우선 해결과제로 기후변화를 언급하였다. 최저 기온 상승과 가뭄 영향 지역 확대, 폭염일수와 지역적 홍수 위험 증가 등 각종 이상기상이 야기하는 피해 확대에 대한 예상과 우려 때문이다(IPCC, 2007). 세계적으로 고온극한과 호우빈도 증가, 태풍 세기가 강화될 것으로 전망되고 있으며(IPCC, 2007), 국내의 경우 겨울철 한파 감소와 대설 피해 증가, 여름철 집중호우의 강도 심화, 가을철 초대형 태풍 발생으로 인한 피해 가능성이 예측 되고 있다(기상연구소, 2007). 현재, 이러한 현상들을 가시화하고 대처방안을 마련하기 위한 일환으로 기후변화 시나리오(GCM)가 작성되어 연구에 이용되고 있다. 그러나 GCM의 경우, 공간적 해상도가 낮아 지형학적 특성 등을 충분히 반영하지 못하는 단점이 있어 최근에는 공간 해상도가 GCM보다 높은 RCM(Regional Climate Model, 지역기후모델)자료를 적용한 연구도 진행되고 있다. 본 논문에서는 SRES A2 온난화가스시나리오 기반의 기상청 RegCM3 RCM($27km{\times}27km$)로 부터 일(daily)단위 자료를 각각 모의하여 비교하고, BLRPM을 이용하여 일(daily)단위 자료를 시(hourly)단위로 분해(disaggregation)하였다. 그리고 이들을 이용하여 지속기간별 확률강우량을 산정하여 미래 기후변화가 극한 강우에 미치는 영향을 평가하였다.

  • PDF

Assessment of Flood Probability Based on Temporal Distribution of Forecasted-Rainfall in Cheongmicheon Watershed (예보강우의 시간분포에 따른 청미천 유역의 홍수 확률 평가)

  • Lee, Hyunji;Jun, Sang Min;Hwang, Soon Ho;Choi, Soon-Kun;Park, Jihoon;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.17-27
    • /
    • 2020
  • The objective of this study was to assess the flood probability based on temporal distribution of forecasted-rainfall in Cheongmicheon watershed. In this study, 6-hr rainfalls were disaggregated into hourly rainfall using the Multiplicative Random Cascade (MRC) model, which is a stochastic rainfall time disaggregation model and it was repeated 100 times to make 100 rainfalls for each storm event. The watershed runoff was estimated using the Clark unit hydrograph method with disaggregated rainfall and watershed characteristics. Using the peak discharges of the simulated hydrographs, the probability distribution was determined and parameters were estimated. Using the parameters, the probability density function is shown and the flood probability is calculated by comparing with the design flood of Cheongmicheon watershed. The flood probability results differed for various values of rainfall and rainfall duration. In addition, the flood probability calculated in this study was compared with the actual flood damage in Cheongmicheon watershed (R2 = 0.7). Further, this study results could be used for flood forecasting.

Establishment of Inundation Probability DB for Forecasting the Farmland Inundation Risk Using Weather Forecast Data (기상예보 기반 농촌유역 침수 위험도 예보를 위한 침수 확률 DB 구축)

  • Kim, Si-Nae;Jun, Sang-Min;Lee, Hyun-Ji;Hwang, Soon-Ho;Choi, Soon-Kun;Kang, Moon-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.33-43
    • /
    • 2020
  • In order to reduce damage from farmland inundation caused by recent climate change, it is necessary to predict the risk of farmland inundation accurately. Inundation modeling should be performed by considering multiple time distributions of possible rainfalls, as digital forecasts of Korea Meteorological Administration is provided on a six-hour basis. As building multiple inputs and creating inundation models take a lot of time, it is necessary to shorten the forecast time by building a data base (DB) of farmland inundation probability. Therefore, the objective of this study is to establish a DB of farmland inundation probability in accordance with forecasted rainfalls. In this study, historical data of the digital forecasts was collected and used for time division. Inundation modeling was performed 100 times for each rainfall event. Time disaggregation of forecasted rainfall was performed by applying the Multiplicative Random Cascade (MRC) model, which uses consistency of fractal characteristics to six-hour rainfall data. To analyze the inundation of farmland, the river level was simulated using the Hydrologic Engineering Center - River Analysis System (HEC-RAS). The level of farmland was calculated by applying a simulation technique based on the water balance equation. The inundation probability was calculated by extracting the number of inundation occurrences out of the total number of simulations, and the results were stored in the DB of farmland inundation probability. The results of this study can be used to quickly predict the risk of farmland inundation, and to prepare measures to reduce damage from inundation.

Projection of future short duration rainfall quantile using rainfall disaggregation technique (강우분해기법을 이용한 미래 단기 확률 강우량 전망)

  • Lee, Jeonghoon;Seo, Jiyu;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.428-428
    • /
    • 2022
  • 본 연구에서는 최근 RCM을 이용하여 생산된 미래 강우자료를 1시간강우량으로 변환하기 위한 Neyman-Scott Rectangular Pulse(NSRP) 모델 기반의 강우분해기법을 개발하고 이를 기반으로 짧은 지속시간에 대한 확률강우량이 어떻게 변화하는지 전망해보고자 하였다. 강우분해기법의 성능평가는 관측자료를 이용하여 수행되었으며, 관측 시계열을 우수하게 모의했으나 일최대 시간 강수량이 20mm를 초과하는 경우 불확실성이 증가함에 따라 사용에 주의가 필요할 것으로 판단된다. 미래 확률강우량 전망결과는 모든 지점(울산, 부산, 창원, 밀양)에서 향후 재현기간별 1시간 확률강우량이 증가될 것으로 전망되었다. 울산과 밀양 지점의 경우, 재현기간에 클수록 증가율 또한 증가하는 경향이 뚜렷하게 나타났는데 이는 상대적으로 복잡한 산악지역 내 위치하고 있고, 다른 지점보다 산지효과 영향이 크기 때문으로 판단된다. 부산과 창원지점은 다른 두 지점에 비해 재현 기간별 확률강우량의 변동성이 크게 나타났는데, 이는 해안에 가깝에 위치해 있어 RCM별 불확실성이 다소 크게 작용한 것으로 판단된다. 특히 과거 200년 빈도 확률강우량 보다 미래 50년미만 빈도 확률 강우량이 더 커질 수 있는 가능성을 확인하였다. 다양한 불확실성이 포함되어 있는 결과이긴 하나 이러한 결과를 기반으로 곧 도래할 미래의 도시유역 방재성능 재정비가 필요할 것으로 사료된다. 아울러, 극한 강우발생 가능성이 높아질 수 있음을 의미하기 때문에 이에 대한 새로운 수자원의 이수와 치수 대비를 위한 구조적/비구조적 대책이 시급할 것으로 판단된다.

  • PDF