For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.
A new method of automatic recording raingauge is developed to measure rainfall 1200mm full scale with high accuracy and resolution. The principle of new instrument is to detect a weight change of a buoyant weight according to a change in water level of raingauge measured by the use of a strain gauge load cell. This method has the advantage of increasing measurement accuracy, since no moving equipment is used. Laboratory test of the instrument was recorded 0.4% error of 190mm rainfall amount. The validity of new instrument was examined by comparing its measured values with values recorded by automatic weather station on June 24 to 25 2001 at Daegu Meteorological Station, when there is 148.3mm rainfall amount. In spite of much rainfall there is only 0.77mm difference of total rainfall amount. This instrument was accomplished high accuracy and resolution at field test in much rainy day.
The sediment transportation caused by soil erosion due to rainfall-discharge in the large watershed scale plays critical role in human society. The relationship between rainfall-discharge-sediment transportation is depending on the start time of rainfall and end of rainfall but, the studies related with rainfall characteristics are insufficient. In this study, The Soil and Water Assession Tool (SWAT) model was used to study the relationship between rainfall-discharge-sediment transportation at the Sook river watershed which is monitored by the Ministry of Environment. To do this, first of all, the sensitivity analysis about model attributes was performed using monitored data. The accuracy analysis of SWAT model was conducted using the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and the coefficient of determination (R2). After that, it was studied what results could be obtained according to changes in rainfall timing and end points. In the result of discharge simulation, the modified rainfall values (sum of total rainfall starting time and end time) showed more high accuracy values (R2:0.90, NSE: 0.8) than original rainfall values (R2:0.76, NSE: 0.72). In the result of sediment transportation simulation, during calibration had more resonable results(R2:0.87, NSE: 0.86) than compared with original rainfall values (R2:0.44, NSE: 0.41). However, validation results of sediment transportation simulation showed low accuracy values compared with calibration results. This results maybe cause monitoring periods of sediment flow compared with discharge monitoring periods. Nevertheless, since rainfall characteristic plays critical rule in model results, continuous research on rainfall characteristic is needed.
In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.
A flash flood is one of the most hazardous natural events caused by heavy rainfall in a short period of time in mountainous areas with steep slopes. Early warning of flash flood is vital to minimize damage, but challenges remain in the enhancing accuracy and reliability of flash flood forecasts. The forecasters can easily determine whether flash flood is occurred using the flash flood guidance (FFG) comparing to rainfall volume of the same duration. In terms of this, the hydrological model that can consider the basin characteristics in real time can increase the accuracy of flash flood forecasting. Also, the predicted radar rainfall has a strength for short-lead time can be useful for flash flood forecasting. Therefore, using both hydrological models and radar rainfall forecasts can improve the accuracy of flash flood forecasts. In this study, FFG was applied to simulate some flash flood events in the Taehwa river basin by using of SURR model to consider soil moisture, and applied to the flash flood forecasting using predicted radar rainfall. The hydrometeorological data are gathered from 2011 to 2021. Furthermore, radar rainfall is forecasted up to 6-hours has been used to forecast flash flood during heavy rain in August 2021, Wulsan area. The accuracy of the predicted rainfall is evaluated and the correlation between observed and predicted rainfall is analyzed for quantitative evaluation. The results show that with a short lead time (1-3hr) the result of forecast flash flood events was very close to collected information, but with a larger lead time big difference was observed. The results obtained from this study are expected to use for set up the emergency planning to prevent the damage of flash flood.
Weather radar has been widely used in measuring precipitation and discharge and predicting flood risks. The radar rainfall estimate has one of the essential problems in terms of uncertainty and accuracy. Previous study analyzed radar errors to reduce its uncertainty or to improve its accuracy. Furthermore, a recent analyzed the effect of radar error on rainfall-runoff using spatial error model (SEM). SEM appropriately reproduced radar error including spatial correlation. Since the SEM does not take the time dependence into account, its time variability was not properly investigated. Therefore, in the current study, we extend the SEM including time dependence as well as spatial dependence, named after Spatial-Temporal Error Model (STEM). Radar rainfall events generated with STEM were tested so that the peak runoff from the response of a basin could be investigated according to dependent error. The Nam River basin, South Korea, was employed to illustrate the effects of STEM on runoff peak flow.
기후변화로 인해 태풍과 집중호우의 빈도 및 규모가 증가하고 있으며, 이로 인한 피해 역시 증가하고 있다. 태풍과 집중호우로 인한 피해를 줄이기 위한 홍수 예 경보 시스템에는 단시간 강우예측모델과 레이더 자료를 이용하여 산정된 예측강우가 필요하다. 이를 위하여 외국의 경우 단시간 강우예측 모델을 개발하여 레이더 자료를 이용한 강우예측을 수행하고 이를 수문모형과 연계하여 그 적용성을 분석하거나 홍수예보의 활용성을 평가하는 연구를 활발히 진행하고 있다. 이에 본 연구에서는 홍수예보를 위한 단시간 예측강우의 활용 측면에서 기상레이더 정보와 결합된 이류모델을 활용한 초단시간 강우예보의 국내 적용성을 평가하고자 한다. 이를 위해 최소자승법(Least-square fitting) 기법으로 레이더 강우를 추정하고, 추정된 강우를 이류모델의 초기장으로 활용하였다. 또한, 레이더 예측강우와 지상관측강우의 비교를 통해 레이더 예측강우의 정확도를 정성적 정량적으로 평가하고, 도시홍수예보의 활용 측면을 고려하여 중랑천 유역을 대상으로 초단시간 예측강우의 유역평균강우량을 산정하여 평가하였다. 연구 결과, 관악산 레이더와 진도 레이더 대부분의 사례에서 선행시간의 증가에 따라 예측강수의 정확도가 감소하지만 정성적 평가 측면에서 예측강우는 0.6 이상의 높은 정확도를 나타내었으며, 정량적 측면에서 예측강우와 관측강우와의 상관계수는 평균적으로 선행시간 1시간 이내에서 대부분 0.5 이상의 비교적 좋은 상관성을 보였다. 예측 유역평균강우의 평가 결과 관측강우에 비해 과소추정하는 경향이 있으나 평균적으로 상관계수 0.5 이상으로 비교적 정확하게 강우를 예측하는 것을 확인할 수 있었다. 이를 통해 레이더 자료와 이류모델을 통해 산정한 초단시간 예측강우의 활용성을 확인할 수 있었다.
하천유역 면적강우량 산정의 정확도를 개선하기 위하여 기존 강우관측자료의 통계적 특성을 이용한 강우관측망의 최적설계방법을 연구하였다. 최적설계를 위한 목적함수는 면적강우량의 추정오차 및 지점강우량 관측비용의 항으로 구성하고, 그 값이 최소인 관측망은 선정하였다. 통계f7파의 추정방법으로는 통계적 분산 산정방법인 크리깅 모형을 채택하였다. 비용은 강우관측소의 설치비와 연간운영 비론 적용하고, 오차항과 비용항의 통합에는 등치매개변수를 이용하였다. 연구된 최적설계방법을 댐 신설로 강우관측소 증설이 필요한 용담댐 유역에 적용하여, 대상유역의 최적 강우관측망을 제안하였다.
Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.
본 연구에서는 2014년 8월 부산 경남 집중호우 사례를 대상으로 레이더와 위성결합 Multi-sensor Blending 초단기 강우예측을 실시하였다. 레이더 최적 Z-R관계는 열대형 강수 Z-R관계식($Z=32R^{1.65}$)을 적용하였으며, 20 mm/h 이상의 강한 강우에서 강수량 추정 정확도가 향상됨을 확인하였다. 또한 60 mm/h 이상 강한 폭우사상에 대하여 천리안 위성자료와 레이더자료를 합성한 결과 정량강수 추정 성능이 향상됨을 확인하였다. 지속시간별 강우예측 정확도 검증을 위하여 AWS, MAPLE 자료와 비교결과, 강우예측 1시간까지 약 50%이상의 지점강우예측 정확도를 확보하였으며, 10분 단위 예측시간별 상관계수는 0.80~0.53, 평균제곱근오차는 3.99~6.43 mm/h로 분석되었다. 본 연구 결과 레이더와 위성정보를 이용한 보다 신뢰성 있는 강우예측 정보 활용이 가능할 것으로 판단되며, 향후 지속적인 사례연구와 레이더 위성 활용 정량강수량 추정 및 예측, 그리고 위성강수 추정 알고리즘 개선의 노력이 필요하다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.