• Title/Summary/Keyword: Rainfall Accuracy

Search Result 359, Processing Time 0.032 seconds

Quantitative Precipitation Estimation using High Density Rain Gauge Network in Seoul Area (고밀도 지상강우관측망을 활용한 서울지역 정량적 실황강우장 산정)

  • Yoon, Seong-sim;Lee, Byongju;Choi, Youngjean
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.283-294
    • /
    • 2015
  • For urban flash flood simulation, we need the higher resolution radar rainfall than radar rainfall of KMA, which has 10 min time and 1km spatial resolution, because the area of subbasins is almost below $1km^2$. Moreover, we have to secure the high quantitative accuracy for considering the urban hydrological model that is sensitive to rainfall input. In this study, we developed the quantitative precipitation estimation (QPE), which has 250 m spatial resolution and high accuracy using KMA AWS and SK Planet stations with Mt. Gwangdeok radar data in Seoul area. As the results, the rainfall field using KMA AWS (QPE1) is showed high smoothing effect and the rainfall field using Mt. Gwangdeok radar is lower estimated than other rainfall fields. The rainfall field using KMA AWS and SK Planet (QPE2) and conditional merged rainfall field (QPE4) has high quantitative accuracy. In addition, they have small smoothed area and well displayed the spatial variation of rainfall distribution. In particular, the quantitative accuracy of QPE4 is slightly less than QPE2, but it has been simulated well the non-homogeneity of the spatial distribution of rainfall.

Development of Rain Gauge and Observation Error (우량계 개발과 측정 오차)

  • 김대원;이부용
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1055-1060
    • /
    • 2002
  • A new method of automatic recording raingauge is developed to measure rainfall 1200mm full scale with high accuracy and resolution. The principle of new instrument is to detect a weight change of a buoyant weight according to a change in water level of raingauge measured by the use of a strain gauge load cell. This method has the advantage of increasing measurement accuracy, since no moving equipment is used. Laboratory test of the instrument was recorded 0.4% error of 190mm rainfall amount. The validity of new instrument was examined by comparing its measured values with values recorded by automatic weather station on June 24 to 25 2001 at Daegu Meteorological Station, when there is 148.3mm rainfall amount. In spite of much rainfall there is only 0.77mm difference of total rainfall amount. This instrument was accomplished high accuracy and resolution at field test in much rainy day.

Assessment of Relationship between Sediment-Discharge Based on Rainfall Characteristic using SWAT Model (SWAT 모델을 이용한 강우특성 변화에 의한 퇴적물-유출량 간의 관계 평가)

  • Kim, Jisu;Kim, Minseok;Cho, Youngchan
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.118-129
    • /
    • 2021
  • The sediment transportation caused by soil erosion due to rainfall-discharge in the large watershed scale plays critical role in human society. The relationship between rainfall-discharge-sediment transportation is depending on the start time of rainfall and end of rainfall but, the studies related with rainfall characteristics are insufficient. In this study, The Soil and Water Assession Tool (SWAT) model was used to study the relationship between rainfall-discharge-sediment transportation at the Sook river watershed which is monitored by the Ministry of Environment. To do this, first of all, the sensitivity analysis about model attributes was performed using monitored data. The accuracy analysis of SWAT model was conducted using the model's efficiency index (Nash and Sutcliffe model efficiency; NSE) and the coefficient of determination (R2). After that, it was studied what results could be obtained according to changes in rainfall timing and end points. In the result of discharge simulation, the modified rainfall values (sum of total rainfall starting time and end time) showed more high accuracy values (R2:0.90, NSE: 0.8) than original rainfall values (R2:0.76, NSE: 0.72). In the result of sediment transportation simulation, during calibration had more resonable results(R2:0.87, NSE: 0.86) than compared with original rainfall values (R2:0.44, NSE: 0.41). However, validation results of sediment transportation simulation showed low accuracy values compared with calibration results. This results maybe cause monitoring periods of sediment flow compared with discharge monitoring periods. Nevertheless, since rainfall characteristic plays critical rule in model results, continuous research on rainfall characteristic is needed.

Multivariate Time Series Analysis for Rainfall Prediction with Artificial Neural Networks

  • Narimani, Roya;Jun, Changhyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.135-135
    • /
    • 2021
  • In water resources management, rainfall prediction with high accuracy is still one of controversial issues particularly in countries facing heavy rainfall during wet seasons in the monsoon climate. The aim of this study is to develop an artificial neural network (ANN) for predicting future six months of rainfall data (from April to September 2020) from daily meteorological data (from 1971 to 2019) such as rainfall, temperature, wind speed, and humidity at Seoul, Korea. After normalizing these data, they were trained by using a multilayer perceptron (MLP) as a class of the feedforward ANN with 15,000 neurons. The results show that the proposed method can analyze the relation between meteorological datasets properly and predict rainfall data for future six months in 2020, with an overall accuracy over almost 70% and a root mean square error of 0.0098. This study demonstrates the possibility and potential of MLP's applications to predict future daily rainfall patterns, essential for managing flood risks and protecting water resources.

  • PDF

Assessment of Flash Flood Forecasting based on SURR model using Predicted Radar Rainfall in the TaeHwa River Basin

  • Duong, Ngoc Tien;Heo, Jae-Yeong;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.146-146
    • /
    • 2022
  • A flash flood is one of the most hazardous natural events caused by heavy rainfall in a short period of time in mountainous areas with steep slopes. Early warning of flash flood is vital to minimize damage, but challenges remain in the enhancing accuracy and reliability of flash flood forecasts. The forecasters can easily determine whether flash flood is occurred using the flash flood guidance (FFG) comparing to rainfall volume of the same duration. In terms of this, the hydrological model that can consider the basin characteristics in real time can increase the accuracy of flash flood forecasting. Also, the predicted radar rainfall has a strength for short-lead time can be useful for flash flood forecasting. Therefore, using both hydrological models and radar rainfall forecasts can improve the accuracy of flash flood forecasts. In this study, FFG was applied to simulate some flash flood events in the Taehwa river basin by using of SURR model to consider soil moisture, and applied to the flash flood forecasting using predicted radar rainfall. The hydrometeorological data are gathered from 2011 to 2021. Furthermore, radar rainfall is forecasted up to 6-hours has been used to forecast flash flood during heavy rain in August 2021, Wulsan area. The accuracy of the predicted rainfall is evaluated and the correlation between observed and predicted rainfall is analyzed for quantitative evaluation. The results show that with a short lead time (1-3hr) the result of forecast flash flood events was very close to collected information, but with a larger lead time big difference was observed. The results obtained from this study are expected to use for set up the emergency planning to prevent the damage of flash flood.

  • PDF

Impacts of temporal dependent errors in radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.180-180
    • /
    • 2015
  • Weather radar has been widely used in measuring precipitation and discharge and predicting flood risks. The radar rainfall estimate has one of the essential problems in terms of uncertainty and accuracy. Previous study analyzed radar errors to reduce its uncertainty or to improve its accuracy. Furthermore, a recent analyzed the effect of radar error on rainfall-runoff using spatial error model (SEM). SEM appropriately reproduced radar error including spatial correlation. Since the SEM does not take the time dependence into account, its time variability was not properly investigated. Therefore, in the current study, we extend the SEM including time dependence as well as spatial dependence, named after Spatial-Temporal Error Model (STEM). Radar rainfall events generated with STEM were tested so that the peak runoff from the response of a basin could be investigated according to dependent error. The Nam River basin, South Korea, was employed to illustrate the effects of STEM on runoff peak flow.

  • PDF

The Applicability Assesment of the Short-term Rainfall Forecasting Using Translation Model (이류모델을 활용한 초단시간 강우예측의 적용성 평가)

  • Yoon, Seong-Sim;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.695-707
    • /
    • 2010
  • The frequency and size of typhoon and local severe rainfall are increasing due to the climate change and the damage also increasing from typhoon and severe rainfall. The flood forecasting and warning system to reduce the damage from typhoon and severe rainfall needs forecasted rainfall using radar data and short-term rainfall forecasting model. For this reason, this study examined the applicability of short-term rainfall forecast using translation model with weather radar data to point out that the utilization of flood forecasting in Korea. This study estimated the radar rainfall using Least-square fitting method and estimated rainfall was used as initial field of translation model. The translation model have verified accuracy of forecasted radar rainfall through the comparison of forecasted radar rainfall and observed rainfall quantitatively and qualitatively. Almost case studies showed that accuracy is over 0.6 within 4 hours leading time and mean of correlation coefficient is over 0.5 within 1 hours leading time in Kwanak and Jindo radar site. And, as the increasing the leading time, the forecast accuracy of precipitation decreased. The results of the calculated Mean Area Precipitation (MAP) showed forecast rainfall tend to be underestimated than observed rainfall but the correlation coefficient more than 0.5. Therefore it showed that translation model could be accurately predicted the rainfall relatively. The present results indicate that possibility of translation model application of Korea just within 2 hours leading forecasted rainfall.

Optimal Network Design for the Estimation of Areal Rainfall (면적강우량 산정을 위한 관측망 최적설계 연구)

  • Lee, Jae-Hyeong;Yu, Yang-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • To improve the accuracy of the areal rainfall estimates over a river basin, the optimal design method of rainfall network was studied using the stochastic characteristics of measured rainfall data. The objective function was constructed with the estimation error of areal rainfall and observation cost of point rainfall and the observation sites with minimum objective function value were selected as the optimal network. As a stochastic variance estimator, kriging model was selected to minimize the error terms. The annual operation cost including the installation cost was considered as the cost terms and an accuracy equivalent parameter was used to combine the error and cost terms. The optimal design method of rainfall network was studied in the Yongdam dam basin whose raingauge numbers need to be enlarged for the optimal rainfall networks of the basin.

Accuracy analysis of flood forecasting of a coupled hydrological and NWP (Numerical Weather Prediction) model

  • Nguyen, Hoang Minh;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.194-194
    • /
    • 2017
  • Flooding is one of the most serious and frequently occurred natural disaster at many regions around the world. Especially, under the climate change impact, it is more and more increasingly trend. To reduce the flood damage, flood forecast and its accuracy analysis are required. This study is conducted to analyze the accuracy of the real-time flood forecasting of a coupled meteo-hydrological model for the Han River basin, South Korea. The LDAPS (Local Data Assimilation and Prediction System) products with the spatial resolution of 1.5km and lead time of 36 hours are extracted and used as inputs for the SURR (Sejong University Rainfall-Runoff) model. Three statistical criteria consisting of CC (Corelation Coefficient), RMSE (Root Mean Square Error) and ME (Model Efficiency) are used to evaluate the performance of this couple. The results are expected that the accuracy of the flood forecasting reduces following the increase of lead time corresponding to the accuracy reduction of LDAPS rainfall. Further study is planed to improve the accuracy of the real-time flood forecasting.

  • PDF

A Multi-sensor basedVery Short-term Rainfall Forecasting using Radar and Satellite Data - A Case Study of the Busan and Gyeongnam Extreme Rainfall in August, 2014- (레이더-위성자료 이용 다중센서 기반 초단기 강우예측 - 2014년 8월 부산·경남 폭우사례를 중심으로 -)

  • Jang, Sangmin;Park, Kyungwon;Yoon, Sunkwon
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.2
    • /
    • pp.155-169
    • /
    • 2016
  • In this study, we developed a multi-sensor blending short-term rainfall forecasting technique using radar and satellite data during extreme rainfall occurrences in Busan and Gyeongnam region in August 2014. The Tropical Z-R relationship ($Z=32R^{1.65}$) has applied as a optimal radar Z-R relation, which is confirmed that the accuracy is improved during 20mm/h heavy rainfall. In addition, the multi-sensor blending technique has applied using radar and COMS (Communication, Ocean and Meteorological Satellite) data for quantitative precipitation estimation. The very-short-term rainfall forecasting performance was improved in 60 mm/h or more of the strong heavy rainfall events by multi-sensor blending. AWS (Automatic Weather System) and MAPLE data were used for verification of rainfall prediction accuracy. The results have ensured about 50% or more in accuracy of heavy rainfall prediction for 1-hour before rainfall prediction, which are correlations of 10-minute lead time have 0.80 to 0.53, and root mean square errors have 3.99 mm/h to 6.43 mm/h. Through this study, utilizing of multi-sensor blending techniques using radar and satellite data are possible to provide that would be more reliable very-short-term rainfall forecasting data. Further we need ongoing case studies and prediction and estimation of quantitative precipitation by multi-sensor blending is required as well as improving the satellite rainfall estimation algorithm.