• Title/Summary/Keyword: Rain out

Search Result 391, Processing Time 0.029 seconds

Study on collapse mechanism and treatment measures of portal slope of a high-speed railway tunnel

  • Guoping Hu;Yingzhi Xia;Lianggen Zhong;Xiaoxue Ruan;Hui Li
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.111-123
    • /
    • 2023
  • The slope of an open cut tunnel is located above the exit of the Leijia tunnel on the Changgan high-speed railway. During the excavation of the open cut tunnel foundation pit, the slope slipped twice, a large landslide of 92500 m3 formed. The landslide body and unstable slope body not only caused the foundation pit of the open cut tunnel to be buried and the anchor piles to be damaged but also directly threatened the operational safety of the later high-speed railway. Therefore, to study the stability change in the slope of the open cut tunnel under heavy rain and excavation conditions, a 3D numerical calculation model of the slope is carried out by Midas GTS software, the deformation mechanism is analyzed, anti-sliding measures are proposed, and the effectiveness of the anti-sliding measures is analyzed according to the field monitoring results. The results show that when rainfall occurs, rainwater collects in the open cut tunnel area, resulting in a transient saturation zone on the slope on the right side of the open cut tunnel, which reduces the shear strength of the slope soil; the excavation at the slope toe reduces the anti-sliding capacity of the slope toe. Under the combined action of excavation and rainfall, when the soil above the top of the anchor pile is excavated, two potential sliding surfaces are bounded by the top of the excavation area, and the shear outlet is located at the top of the anchor pile. After the excavation of the open cut tunnel, the potential sliding surface is mainly concentrated at the lower part of the downhill area, and the shear outlet moves down to the bottom of the open cut tunnel. Based on the deformation characteristics and the failure mechanism of the landslides, comprehensive control measures, including interim emergency mitigation measures and long-term mitigation measures, are proposed. The field monitoring results further verify the accuracy of the anti-sliding mechanism analysis and the effectiveness of anti-sliding measures.

The Characteristics of Traditional Irrigation Farming System of Uiseong-gun (의성 전통수리 농업시스템의 특징)

  • Lee, Yoo-Jick;Lee, Seung-Hye;Lee, Da-Young;Jeong, Jae-Hyeon;Park, Jin-Wook;Gu, Jin Hyuk
    • Journal of Korean Society of Rural Planning
    • /
    • v.29 no.1
    • /
    • pp.69-79
    • /
    • 2023
  • Uiseong-gun, Gyeongsangbuk-do, one of the representative small rain regions, has developed a traditional irrigation farming system while overcoming and adapting to unfavorable agricultural environments from the days of the ancient nation of Jomunguk to the present. In 2018, its value was recognized and designated as Nationally Important Agricultural Heritage System No. 10. This study was conducted with the purpose of examining the characteristics of the traditional irrigation farming system in Uiseong from the viewpoints of irrigation facilities, irrigation communities, and agricultural activities. The research results are as follows. Uiseong-gun has been expanding irrigation facilities for agriculture since long ago, and it has been investigated that a total of 6,227 irrigation facilities are currently distributed along the Wicheon water system that crosses Uiseong-gun from east to west. Irrigation facilities appear differently depending on the topography. The irrigation facility has a 'su-tong' as an irrigation passage and a corkscrew structure 'mot-tchong' as a water quantity control device, so the amount of water was adjusted as needed. Through this facility, surface water with warmer temperature is supplied to the farmland to prevent cold damage to crops. Uiseong has developed activities to organize irrigation communities in one village or several villages to secure agricultural water from an early age. Currently, this tradition continues, and a total of 213 irrigation communities manage 375 irrigation facilities (6.0% of all irrigation facilities). Through this organization, called Mong-ri-gye, water for agriculture is obtained, managed, and distributed equitably. In order to increase agricultural production, Uiseong implemented double cropping by converting rice fields and fields. In the case of Mt. Geumseong, double cropping of rice and barley was mainly carried out until the 1970s, but since the 1980s, double cropping of rice and garlic has been implemented with higher income. One of the unique features of the agricultural system of this region is the spectacular landscape that changes simultaneously from field to rice field in spring and from rice field to field in autumn.

Korean independence activist Hong-Kyun Shin (독립운동가 신홍균 한의사에 대하여)

  • LEE Sang-hwa
    • The Journal of Korean Medical History
    • /
    • v.35 no.2
    • /
    • pp.69-82
    • /
    • 2022
  • Shin Hong-gyun was born on August 20, 1881. The second son of Shin Tae-geom (申泰儉) in Sangsang-ri, Sinbukcheong-myeon, Bukcheong-gun,Hamgyeongnam-do. His family had been practicing East Asian medicine as a family business. At that time, the families of East Asian doctors who passed the general examination of the Joseon Dynasty had been continuing the East Asian medicine business from generation to generation. Starting with exile in North Gando in 1911, he was located in Wangga-dong, 17 Doo-gu, Changbaek-hyeon. In 1915, he met General Choi Un-san in Bongo-dong, treated the soldiers suffering from cellulitis, and participated in the training process to prepare for the upcoming anti-Japanese war. However, because of a growing difference of opinion with General Choi Woon-san, Shin Hong-gyun left Bono-dong after a year and mets Sorae Kim Jung-geon and joined the founding of Wonjonggyo and Daejindan, an anti-Japanese armed group. It is said that Shin Hong-gyun established many schools in Korean villages destroyed by the Gyeongshin disaster and 14 schools were established under the names of Wonjonggyo and Daejin. After the Japanese established the puppet Manchukuo in 1931, the Manchurian Defense Forces were formed. Koreans and Chinese immigrants to Manchuria worked together to carry out a joint Korean-Chinese anti-Japanese operation towards the Japanese Empire. In 1933, 50 of the Daejindan members joined the Korean Independence Army, and among them, Shin Hong-gyun began to work as a medical doctor in earnest. During an ambush in Daejeonryeong Valley, he could not get a proper meal and, to make matters worse, got wet in the rainy season, so the situation was a challenge in various ways. At this time, Shin Hong-gyun showed his knowledge of herbal medicine, picked black wood ear mushrooms that grew wild in the mountains, washed them in rain water, and provided food to the independence fighters and relieved them of hunger. After the Battle of Daejeon-ryeong, the Japanese army's suppression of the independence forces intensified, and most of the independence fighters escaped from the Chinese army's encirclement and were scattered. Ahn Tae-jin and others led the remaining units and continued the anti-Japanese armed struggle in the forest areas of Yeongan, Aekmok, Mokneung, and Milsan.

The Historical Astronomic Observatory and Calendar of the Village of Graw, Northern Iraq

  • Rzger Abdulkarim ABDULA
    • Acta Via Serica
    • /
    • v.8 no.2
    • /
    • pp.25-52
    • /
    • 2023
  • The astronomic observatory of Graw Village is located on Mount Dari Lolikan, facing the village. Graw is located in the foothills of Mount Ser-i-Rash, 25 km northeast of Erbil Governorate, Iraq. This study attempts to clarify the foundations of this observatory, its components, as well as the founder and the date of its establishment. The study made efforts to clarify the benefits of this calendar to local residents in their daily lives. The database for this study is based on direct observation of the observatory station. The observation included the recording date and position of sunset and the appearance of stars throughout the year. Observation and documentation for both sunset and stars were performed over several years due to weather conditions since observation was not possible on foggy and rainy days and nights. Each observation took five to ten minutes depending on the clarity of the sky. The observatory consists of a group of stone cones. Each cone was built by stones in a specific location after careful and long observation of the sunset. Efforts were made to observe the disappearance and reappearance of the stars based on the change in the position of the Earth in relation to the sun. Graw's calendar helped to recognize important times of the year, such as the winter and summer forties, which were very important, especially when snow covered the roads, transportation stopped, crops spoiled, and pets stayed in their barn. The most important features of the winter forties are the memories, experiences, and minds of the villagers' ancestors. The forties were associated with the arrival of cold and heavier rain throughout the year, which is consistent with modern science, as the angle at which the Earth rotates increases the number and activity of weather depressions that affect the study area during this period. This observatory has a close connection with the daily life of the villagers, especially in the past centuries. It helped the people of the area in their appointments to carry out their work in the field of agriculture. The observatory was also of great importance in the field of education in the past centuries, especially in traditional religious schools. It also appears from this research that the calendar has ancient roots, which extend back thousands of years, as evidenced by the Ezidis who follow an ancient religion whose roots extend back thousands of years and who fast during both the winter and summer forties annually, with the participation of people in various regions of the world. It is not known who made this astronomic observatory but most of the oral information that has been passed down to us by word of mouth agrees on both Mullah Abdullah Al-Kurdi and Mullah Omar. Likely, this astronomic observatory was built around the late 17th and early 18th centuries.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Development of Single-span Plastic Greenhouses for Hot Pepper Rainproof Cultivation (고추 비가림재배용 단동 비닐하우스 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Moon, Doo Gyung
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.371-377
    • /
    • 2013
  • The government has been carrying out a project for supporting the rain shelter for hot pepper as part of measures stabilizing the demand and supply of hot pepper since 2012. However, the eaves height of single-span plastic greenhouses extensively used in farms is low, which are inappropriate for the rainproof cultivation of hot pepper. This study attempted to develop single-span plastic greenhouses which are structurally safe and have the dimensions suitable for the rainproof cultivation of hot pepper as well. The structure status of plastic greenhouses and restructuring wishes of 56 rainproof cultivation farms nationwide were investigated to set up the width and height of the plastic greenhouses. 53% of the plastic greenhouses currently in operation had a width of under 7 m and 64% of their eaves had a height of 1.5 m or less, which accounted for the highest rate. Mostly the width of 7.0 m was desired for the greenhouses and the height of 2.0 m for their eaves, so these values were chosen as the dimensions for the singlespan plastic greenhouses. After an analysis of their structural safety while changing the specifications of the rafter pipe in various ways, 5 kinds of models were suggested considering the frame ratio and installation costs. The 12-Pepper-1 model is a developed single-span plastic greenhouse for hot pepper in which a ${\emptyset}42.2{\times}2.1t$ rafter pipe is installed at an interval of 90cm and the models of 12-Pepper-2 through 5 are the other developed ones in which a ${\emptyset}31.8{\times}1.5t$ rafter pipe is installed at intervals of 60 cm, 70 cm, 80 cm and 90 cm, respectively. As a result of an analysis of economic feasibility of 12-Pepper-2 compared to 10-Single-3 in the notification of the Ministry for Food, Agriculture, Forestry and Fisheries, it turned out that there would be an increase in profits by about 1.2 million won based on one building of a greenhouse sized 672 $m^2$.

Yield and Fruit Quality of Pepper as Affected by Different Liquid Fertilizer in Organic Farming (고추 유기농 재배 시 액비처리에 따른 수량 및 품질)

  • Nam, Chun-Woo;Cho, Young-Sang;Moon, Hee-Ja;Chae, Soo-Young;Yang, Eun-Young;Cho, Myeong-Cheoul
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.387-403
    • /
    • 2020
  • This experiment was carried out to determine optimal concentration of organic liquids for the improvement of antioxidant in pepper. As human beings enter the age of 100, they are naturally recognized as a standard of high quality agricultural products for safety and improvement of functional materials. Tomatoes are among the most consumed vegetables in the world and there is a growing interest in varieties with high functional content. However, there is a limit to the improvement of functional materials of certain varieties, so it is necessary to study the improvement of materials by cultivation physiology and environmental conditions. The test material was sown on March 15th in Wanju province and on June 15th in rain shelter house using pepper "suppermanidda" varieties. To investigate the optimum concentration of organic liquids for the improvement of antioxidant, 15 kinds of treatments were carried out including control, tomato liquid fertilizer etc. The liquid fertilizer of organic material was treated with 6 times of irrigation, and the analysis of nutrients and antioxidant was done by harvesting pepper on the September 10th. The contents of beta-carotene was increased in the T3, T4, T12 treatments, vitamin C was in the P14 treatments, flavonoid, polyphenol were in the P12 treatment compared to the control. In T12 treatment, flavonoid increased by 115.9%, polyphenol by 121.7%, beta-carotene by 117.2% and vitamin C by 136.1% compared to the control. There was no significant difference in the growth characteristics and characteristics of pepper fruit of pepper according to liquid fertilizer treatment. Therefore, it has been confirmed that the organic antioxidant is affected by the liquid fertilizer treatments of organic materials and it is necessary to study the environmental conditions such as temperature, moisture and photosynthesis.

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안전성해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.183-193
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal fetid. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about $60^{\circ}$in the northern part and $83^{\circ}$in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9 MPa and that of weak sandstone was 10 MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north(east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30~$36^{\circ}$for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described abode. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures. the stability of 니ope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

Stability Analysis of Open Pit Slopes in the Pasir Coal Field, Indonesia (인도네시아 Pasir 탄전에서의 노천채탄장 사면의 안정성 해석)

  • 정소걸;선우춘;한공창;신희순;박연준
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.430-440
    • /
    • 2000
  • A series of studies such as geological logging data analysis, detailed geological survey, rock mass evaluation, in-situ and laboratory tests, rock strength and mechanical properties of the rock were concerned. The stability of the slope were carried out inorder to design the pit slope and individual benches using the stereographic projection analysis and numerical methods in Roto Pit of Pasir coal field. The bedding plane was one of the major discontinuities in the Roto Pit and the dip of which is about 60$^{\circ}$ in the northern part and 83$^{\circ}$ in the southern part. The dip of bedding becomes steeper from north to south. The plane and toppling failures are presented in many slopes. In laboratory test the average uniaxial compressive strength of mudstone was 9MPa and that of weak sandstone was 10MPa. In-situ test showed that the rocks of Roto north mining area are mostly weak enough to be classified in grade from R2(weak) to R3(medium strong weak) and the coal is classified in grades from R1(Very weak) to R2(Weak). The detailed stability analysis were carried out on 4 areas of Roto north (east, west, south and north), and 2 areas of Roto south(east and west). In this paper, the minimum factor of safety was set to 1.2 which is a general criterion for open pit mines. Using the stereographic projection analysis and the limit equilibrium method, slope angles were calculated as 30∼36$^{\circ}$ for a factor of safety greater than 1.2. Then these results were re-evaluated by numerical analysis using FLAC. The final slope angles were determined by rational described above. A final slope of 34 degrees can guarantee the stability for the eastern part of the Roto north area, 33 degrees for the western part, 35 degrees for the northern part and 35 degrees for the southern part. For the Roto south area, 36 degrees was suggested for both sides of the pit. Once the pit slope is designed based on the stability analysis and the safety measures, the stability of slope should be checked periodically during the mining operations. Because the slope face will be exposed long time to the rain fall, a study such aspreventive measures against weathering and erosion is highly recommended to be implemented.

  • PDF

The Effects of pH Control on the Leaching Behavior of Heavy Metals within Tailings and Contaminated Soils : Seobo and Cheongyang Tungsten Mine Areas (광미와 오염토양 내 중금속 용출특성에 미치는 pH영향 : 청양과 서보중석광산)

  • 이평구;강민주;박성원;염승준
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.469-480
    • /
    • 2003
  • Laboratory leaching experiment study carried out to estimate a extent of heavy metals that could be leached out when acid rain(pH 5.0-3.0) and strong acidic solution(pH 2.5-1.0) reacted with tailings and contaminated soils from abandoned metal mines. In slightly to moderately acid conditions(pH 5.0-3.0), As, Pb and Zn dissolutions became significantly increased with decreased pH in tailing, while dissolution of these elements was very limited in contaminated soil. These results suggested that moderately acid rainwater leaches Pb, As and Zn from the tailings, while these elements would remain fixed in contaminated soil. In the pH range of 2.5-1.0(strongly acid condition), Zn, Cd and Cu concentrations of leachate rapidly increased with decreased pH in contaminated soil, while Pb, As and Co dissolutions became importantly increased in tailings. The experimental solubility of Zn. Cd and Cu was very low even at very low pH values(up to pH 1), except for CY4(Cheongyang mine). These can result from an incomplete dissolution or the presence of less soluble mineral phases. So, the solubility of heavy metals depends not only on the pH values of leachate but also on the speciation of metals associated with contaminated soils and tailings. The relative mobility of each element within failings at the pH 5.0-3.0 of the reaction solution was in the order of Pb>Zn>Cd>Co=Cu>As. In case of pH 2.5-1.0 of the reaction solution, the relative mobility of each element within contaminated soils and tailings were in the order of Zn>Cd>Cu>Co>Pb=As for contaminated soils, and Pb>Zn>Cd>hs>Co>Cu for tailings. The obtained results could be useful for assessing the environmental effects and setting up the restoration plan in the areas.