• Title/Summary/Keyword: Rain intensity

Search Result 207, Processing Time 0.032 seconds

Protocol for testing of cold-formed steel wall in regions of low-moderate seismicity

  • Shahi, Rojit;Lam, Nelson;Gad, Emad;Wilson, John
    • Earthquakes and Structures
    • /
    • v.4 no.6
    • /
    • pp.629-647
    • /
    • 2013
  • Loading protocols have been developed for quasi-static cyclic testing of structures and components. However, it is uncertain if protocols developed for conditions of intense ground shaking in regions of high seismicity would also be applicable to regions of low-moderate seismicity that are remote from the tectonic plate boundaries. This study presents a methodology for developing a quasi-static cyclic displacement loading protocol for experimental bracing evaluation of cold-formed steel stud shear walls. Simulations presented in the paper were based on conditions of moderate ground shaking (in Australia). The methodologies presented are generic in nature and can be applied to other regions of similar seismicity conditions (which include many parts of China, Korea, India and Malaysia). Numerous response time histories including both linear and nonlinear analyses have been generated for selected earthquake scenarios and site classes. Rain-flow cycle counting method has been used for determining the number of cycles at various ranges of normalized displacement amplitude. It is found that the number of displacement cycles of the loading protocol increases with increasing intensity of ground shaking (associated with a longer return period).

The Effect of Radar Data Assimilation in Numerical Models on Precipitation Forecasting (수치모델에서 레이더 자료동화가 강수 예측에 미치는 영향)

  • Ji-Won Lee;Ki-Hong Min
    • Atmosphere
    • /
    • v.33 no.5
    • /
    • pp.457-475
    • /
    • 2023
  • Accurately predicting localized heavy rainfall is challenging without high-resolution mesoscale cloud information in the numerical model's initial field, as precipitation intensity and amount vary significantly across regions. In the Korean Peninsula, the radar observation network covers the entire country, providing high-resolution data on hydrometeors which is suitable for data assimilation (DA). During the pre-processing stage, radar reflectivity is classified into hydrometeors (e.g., rain, snow, graupel) using the background temperature field. The mixing ratio of each hydrometeor is converted and inputted into a numerical model. Moreover, assimilating saturated water vapor mixing ratio and decomposing radar radial velocity into a three-dimensional wind vector improves the atmospheric dynamic field. This study presents radar DA experiments using a numerical prediction model to enhance the wind, water vapor, and hydrometeor mixing ratio information. The impact of radar DA on precipitation prediction is analyzed separately for each radar component. Assimilating radial velocity improves the dynamic field, while assimilating hydrometeor mixing ratio reduces the spin-up period in cloud microphysical processes, simulating initial precipitation growth. Assimilating water vapor mixing ratio further captures a moist atmospheric environment, maintaining continuous growth of hydrometeors, resulting in concentrated heavy rainfall. Overall, the radar DA experiment showed a 32.78% improvement in precipitation forecast accuracy compared to experiments without DA across four cases. Further research in related fields is necessary to improve predictions of mesoscale heavy rainfall in South Korea, mitigating its impact on human life and property.

LandScient_EWS: Real-Time Monitoring of Rainfall Thresholds for Landslide Early Warning - A Case Study in the Colombian Andes

  • Roberto J. Marin;Julian Camilo Marin-Sanchez
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.173-191
    • /
    • 2024
  • Landslides pose significant threats to many countries globally, yet the development and implementation of effective landslide early warning systems (LEWS) remain challenging due to multifaceted complexities spanning scientific, technological, and political domains. Addressing these challenges demands a holistic approach. Technologically, integrating thresholds, such as rainfall thresholds, with real-time data within accessible, open-source software stands as a promising solution for LEWS. This article introduces LandScient_EWS, a PHP-based program tailored to address this need. The software facilitates the comparison of real-time measured data, such as rainfall, with predefined landslide thresholds, enabling precise calculations and graphical representation of real-time landslide advisory levels across diverse spatial scales, including regional, basin, and hillslope levels. To illustrate its efficacy, the program was applied to a case study in Medellin, Colombia, where a rainfall event on August 26, 2008, triggered a shallow landslide. Through pre-defined rainfall intensity and duration thresholds, the software simulated advisory levels during the recorded rainfall event, utilizing data from a rain gauge positioned within a small watershed and a single grid cell (representing a hillslope) within that watershed. By identifying critical conditions that may lead to landslides in real-time scenarios, LandScient_EWS offers a new paradigm for assessing and responding to landslide hazards, thereby improving the efficiency and effectiveness of LEWS. The findings underscore the software's potential to streamline the integration of rainfall thresholds into both existing and future landslide early warning systems.

Evaluation of Countermeasures Effectiveness in a Radioactively Contaminated Urban Area Using METRO-K : The Implementation of Scenarios Designed by the EMRAS II Urban Areas Working Group (METRO-K를 사용한 방사능으로 오염된 도시지역에서 대응행위효과 평가 : EMRAS II 도시오염평가분과 시나리오의 이행)

  • Hwang, Won-Tae;Jeong, Hae-Sun;Jeong, Hyo-Joon;Kim, Eun-Han;Han, Moon-Hee
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.108-115
    • /
    • 2012
  • The Urban Areas Working Group within the EMRAS-2 ($\underline{E}$nvironmental $\underline{M}$odelling for $\underline{RA}$diation $\underline{S}$afety, Phase 2), which has been supported by the IAEA (International Atomic Energy Agency), has designed some types of accidental scenarios to test and improve the capabilities of models used for evaluation of radioactive contamination in urban areas. For the comparison of the results predicted from the different models, the absorbed doses in air were analyzed as a function of time following the accident with consideration of countermeasures to be taken. Two kinds of considerations were performed to find the dependency of the predicted results. One is the 'accidental season', i.e. summer and winter, in which an event of radioactive contamination takes place in a specified urban area. Likewise, the 'rainfall intensity' on the day of an event was also considered with the option of 1) no rain, 2) light rain, and 3) heavy rain. The results predicted using a domestic model of METRO-K have been submitted to the Urban Areas Working Group for the intercomparison with those of other models. In this study, as a part of these results using METRO-K, the countermeasures effectiveness in terms of dose reduction was analyzed and presented for the ground floor of a 24-story business building in a specified urban area. As a result, it was found that the countermeasures effectiveness is distinctly dependent on the rainfall intensity on the day of an event, and season when an event takes place. It is related to the different deposition amount of the radionuclides to the surfaces and different behavior on the surfaces following a deposition, and different effectiveness from countermeasures. In conclusion, a selection of appropriate countermeasures with consideration of various environmental conditions may be important to minimize and optimize the socio-economic costs as well as radiation-induced health detriments.

The Washing Effect of Precipitation on PM10 in the Atmosphere and Rainwater Quality Based on Rainfall Intensity (강우 강도에 따른 대기 중 미세먼지 저감효과와 강우수질 특성 연구)

  • Park, Hyemin;Byun, Myounghwa;Kim, Taeyong;Kim, Jae-Jin;Ryu, Jong-Sik;Yang, Minjune;Choi, Wonsik
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1669-1679
    • /
    • 2020
  • This study examines the washing effect of precipitation on particulate matter (PM) and the rainwater quality (pH, electrical conductivity (EC), water-soluble ions concentration). Of six rain events in total, rainwater samples were continuously collected every 50 mL from the beginning of the precipitation using rainwater collecting devices at Pukyong National University, Busan, South Korea, from March 2020 to July 2020. The collected rainwater samples were analyzed for pH, EC, and water-soluble ions (cations: Na+, Mg2+, K+, Ca2+, NH4+, and anions: Cl-, NO3-, SO42-). The concentrations of particulate matter were continuously measured during precipitation events with a custom-built PM sensor node. For initial rainwater samples, the average pH and EC were approximately 4.3 and 81.9 μS/cm, and the major ionic components consisted of NO3- (5.4 mg/L), Ca2+ (4.2 mg/L), Cl- (4.1 mg/L). In all rainfall events, rainwater pH gradually increased with rainfall duration, whereas EC gradually decreased due to the washing effect. When the rainfall intensities were relatively weak (<5 mm/h), PM10 reduction efficiencies were less than 40%. When the rainfall intensities were enhanced to more than 7.5 mm/h, the reduction efficiencies reached more than 60%. For heavy rainfall events, the acidity and EC, as well as ions concentrations of initial rainwater samples, were higher than those in later samples. This appears to be related to the washing effect of precipitation on PM10 in the atmosphere.

A Study for Characterization on Shallow Behavior of Soil Slope by Flume Experiments (토조실험 장치를 이용한 토사비탈면 표층거동 특성 연구)

  • Suk, Jae-wook;Park, Sung-Yong;Na, Geon-ha;Kang, Hyo-Sub
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.489-499
    • /
    • 2018
  • A flume experiments was used to study the characteristics of the surface displacements and volumetric water contents (VWC) during torrential rain. The surface displacement and VWC of the granite weathered soil were measured for rainfall intensity (100, 200 mm/hr) and initial ground condition (VWC 7, 14, 26%). The test processes were also recorded by video cameras. According to the test results, The shallow failure is classified into three types: retrogressive failure, progressive failure and defined failure. In the case of retrogressive failure and progressive failure, relatively large damage could occur due to the feature that soil is deposited to the bottom of the slope. the shallow failure occurred when the VWC reached a certain value regardless of the initial soil condition. It was found that the shallow failure can be predicted through the increase patton of the VWC under the condition of the ground dry condition (VWC 7%) and the natural condition (VWC 14%). For high rainfall intensity, progressive failure predominated, and rainfall intensity above a certain level did not affect wetting front transition.

Landslide Susceptibility Assessment Considering the Saturation Depth Ratio by Rainfall Change (강우변화에 따른 토층 내 침투깊이를 고려한 산사태위험지수 개발)

  • Kwak, Jae Hwan;Kim, Man-Il;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.687-699
    • /
    • 2018
  • Understanding rain infiltration into the ground is an important feature of landslide risk evaluation. In this study, a landslide risk index for the study area is suggested, wherein the result of the landslide risk evaluation, based on the factor of safety (FS), is used. The landslide risk index is a landslide risk prediction index that utilizes the saturated depth ratio of the ground. Based on the landslide risk result for the study area, it was found that the FS was first to decrease. However, it gradually became convergent over the 50-year rainfall intensity study period, a result that is similar to the relationship between the saturated depth ratio and soil thickness. Moreover, saturated depth was also found to be deeper on gentle slopes than steep slopes. As such, the landslide risk index, based on the Inhu-ri study result, is thus suggested. Additionally, the suggested landslide risk index was compared and analyzed against the rainfall intensity of previous landslide experience. Results thus revealed that almost all landslides that occurred were over 0.7, which is the second grade, based on the landslide risk index.

An Experimental Study to Predict the Concentration of Moving Tire and Road Wear Particles from Road to Ocean Environment (도로에서 해양 환경까지 이동하는 타이어 마모입자의 농도를 예측하기 위한 실험적 연구)

  • Tae-Woo Kang;Won-Hyun Ji
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.196-205
    • /
    • 2024
  • In this study, sample collection and quantification analysis of Tire and Road Wear Particles (TRWP) from the road surface were conducted to predict the amount of TRWP generated on the road surface moving by environmental compartment depending on rainfall intensity. Samples were collected from TRWP remaining on the road surface two days after the 3 days average rainfall (0-60 mm/day) occurred and the road surface was completely dry. Only TRWP were separated from the collected samples through size and density separation, and the difference in the content of TRWP remaining on the road surface after rainfall was based on the value of 60.2 g o f TRWP o n a day witho ut rain (0 mm/day). By calculating, it was co nfirmed that 0-49.4 g o f TRWP can mo ve to the environmental compartment depending on the intensity of rainfall. In addition, it was confirmed that when the rainfall intensity was 60 mm/day, the amount of TRWP moving to each environmental section was 3.75 times higher compared to 5 mm/day, and using the results of previous research, the total amount of TRWP that can be transported to the environmental compartment by rainfall from the domestic road environment annually is 9,592 tons, and 288 tons of this can be affected by marine microplastics. However, this study has limitations in terms of limited space and predicted results, but it would like to mention the need to improve the domestic road environment and sewage treatment system to reduce TRWP. In the future, we plan to conduct sample collection and concentration analysis studies of TRWP in real environmental compartments to verify the results of this study.

The Effect of Rain on Traffic Flows in Urban Freeway Basic Segments (기상조건에 따른 도시고속도로 교통류변화 분석)

  • 최정순;손봉수;최재성
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.29-39
    • /
    • 1999
  • An earlier study of the effect of rain found that the capacity of freeway systems was reduced, but did not address the effects of rain on the nature of traffic flows. Indeed, the substantial variation due to the intensity of adverse weather conditions is entirely rational so that its effects must be considered in freeway facility design. However, all of the data in Highway Capacity Manual(HCM) have come from ideal conditions. The primary objective of this study is to investigate the effect of rain on urban freeway traffic flows in Seoul. To do so, the relations between three key traffic variables(flow rates, speed, occupancy), their threshold values between congested and uncontested traffic flow regimes, and speed distribution were investigated. The traffic data from Olympic Expressway in Seoul were obtained from Imagine Detection System (Autoscope) with 30 seconds and 1 minute time periods. The slope of the regression line relating flow to occupancy in the uncongested regime decreases when it is raining. In essence, this result indicates that the average service flow rate (it may be interpreted as a capacity of freeway) is reduced as weather conditions deteriorate. The reduction is in the range between 10 and 20%, which agrees with the range proposed by 1994 US HCM. It is noteworthy that the service flow rates of inner lanes are relatively higher than those of other lanes. The average speed is also reduced in rainy day, but the flow-speed relationship and the threshold values of speed and occupancy (these are called critical speed and critical occupancy) are not very sensitive to the weather conditions.

  • PDF

Growth Performances of Seedlings of Daphniphyllum macropodum in Naejang National Park for Container Seeding Production (시설양묘에 적용을 위한 내장산 굴거리 나무 군락내 치수의 생장 특성)

  • Chung, Jin-Chul;Jeong, Ji-Young;Choi, Jeong-Ho;Jeon, Kyung-Soo;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.365-372
    • /
    • 2011
  • This study aimed to examine foundational data for container seedling production with the subject of Daphniphyllum macropodum community in Mt. Naejang National Park. To achieve the goal, it investigated the growth characteristics of young tree seedlings growing in places with different light intensity environment. Regarding the growth environment of Daphniphyllum macropodum community, it was typical heavy rain summer climate, and the soil was silt loam with the organic content as 11.42~15.61%, total nitrogen as 0.50~0.76%, cation exchangeable capacity (C.E.C) as 18.92~23.32 cmol/kg, and pH as 4.85~5.58. About light intensity environment changed by research plots, relative transmittance of solar radiation was 71~76% in plot A, 37~42% in plot B, 65~70% in plot C, and 28~33% in plot D. The seedlings tended to be intensively distributed either under the crown of their mother tree or in the slope site, and plot A and C where light intensity environment is relatively more favorable showed 1,550 tree/ha and 1,250 tree/ha. Total biomass production of Daphniphyllum macropodum seedlings was 5.37 g in plot A and 5.29 g in plot C, so they were higher than 4.42~4.51 g in plot B and D with relatively less favorable light intensity environment. The T/R ratio was 1~2, leaf area rate was $139.71{\sim}183.50cm^2{\cdot}g^{-1}$, leaf area ratio was $39.68{\sim}60.66cm^2{\cdot}g^{-1}$, and leaf dry weight ratio grew higher in the range of $0.28{\sim}0.33cm^2{\cdot}g^{-1}$ as the intensity of radiation became less. It is thought that in the generation and growth of Daphniphyllum macropodum seedlings, the intensity of light has more effects than the organic content in soil. And it is also thought that in the application of container seedlings production, light environment management over 65~70% to full sun light intensity will affect significantly the initial growth of Daphniphyllum macropodum.