• Title/Summary/Keyword: Rain Storm

Search Result 134, Processing Time 0.034 seconds

Thermodynamic Characteristics Associated with Localized Torrential Rainfall Events in the Middle West Region of Korean Peninsula (한반도 중서부 국지성 집중호우와 관련된 열역학적 특성)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Han, Sang-Ok
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.457-470
    • /
    • 2014
  • Thermodynamic conditions related with localized torrential rainfall in the middle west region of Korean peninsula are examined using radar rain rate and radiosonde observational data. Localized torrential rainfall events in this study are defined by three criteria base on 1) any one of Automated Synoptic Observing System (ASOS) hourly rainfall exceeds $30mmhr^{-1}$ around Osan, 2) the rain (> $1mmhr^{-1}$) area estimated from radar reflectivity is less than $20,000km^2$, and 3) the rain (> $10mmhr^{-1}$) cell is detected clearly and duration is short than 24 hr. As a result, 13 cases were selected during the summer season of 10 years (2004-13). It was found that the duration, the maximum rain area, and the maximum volumetric rain rate of convective cells (> $30mmhr^{-1}$) are less than 9hr, smaller than $1,000km^2$, and $15,000{\sim}60,000m^3s^{-1}$ in these cases. And a majority of cases shows the following thermodynamic characteristics: 1) Convective Available Potential Energy (CAPE) > $800Jkg^{-1}$, 2) Convective Inhibition (CIN) < $40Jkg^{-1}$, 3) Total Precipitable Water (TPW) ${\approx}$ 55 mm, and 4) Storm Relative Helicity (SRH) < $120m^2s^{-2}$. These cases mostly occurred in the afternoon. These thermodynamic conditions indicated that these cases were caused by strong atmospheric instability, lifting to overcome CIN, and sufficient moisture. The localized torrential rainfall occurred with deep moisture convection result from the instability caused by convective heating.

Identification of operating parameters in auto-discharging filter system for treatment of urban storm water (자동방류가 가능한 여과형 비점오염처리장치의 운전인자 도출)

  • Kim, Sun-Hee;Gwon, Eun-Mi;Pak, Sung-Soon;Joh, Seong-Ju;Lim, Chea-Hoan;Kang, Seon-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.377-386
    • /
    • 2010
  • To identify operating parameters of the up-flow filtering system, which is available to discharge filtering residue after the rain, developed for treatment of urban storm runoff, lab scale test was carried out. Removal efficiency of SS was 68.7%, 62.2%, and 58.6% at the area roading rate of 2.46m/h, 4.68m/h, and 10m/h, respectively, filtering device is desirable to operate at the lower than 4.68m/h of area roading rate to get higher level of 60% SS removal efficiency. The removal efficiency of SS was 57.1% ~ 68.7% at the raw water SS of 100mg/L ~ 600mg/L, and the SS in treated water was maintained at the constant level through the elapsed time. It is indicate that filtering device can guarantee a certain level of effluent water quality at various raw water quality. The removal efficiency of SS to the depth of filter media was 68.3%, 78.6% at the filter depth of 10 cm, 20cm respectively. The final treated water quality was showed 30.2mg/L of CODMn, 1.60mg/L of TN and 0.25mg/L of TP. The average removal efficiencies by filtering device developed in this research were recorded slightly lower levels than other research. The main reason of these results were the first, the filter depth of the media used in this test was shallow, the second, the kind of filter media in discharge port of residue. More research to kind of filter media, filter packing rate, select of media for residue discharge port should be go on to produce optimum operating condition. The result of this study would be valuable for the application of filtration device to control of urban storm water.

Hydrological Consequences of Converting Forestland to Coffee Plantations and Other Agriculture Crops on Sumber Jaya Watershed, West Lampung, Indonesia

  • Manik, Tumiar Katarina;Sidle, Roy Carl
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.4
    • /
    • pp.293-303
    • /
    • 2018
  • Sumber Jaya (54,194 hectares) is a district in West Lampung, Indonesia, located at the upper part of Tulang Bawang watershed. This watershed is one major water resource for Lampung Province, but has become a focal point of discussion because of the widespread conversion of forestland to coffee plantations and human settlements which lead to environmental and hydrological problems. This research aimed to evaluate Sumber Jaya watershed affecting by rapid land use change using hydrological methods as a base for watershed management. Nested catchment structure consisted of eight sub-catchments was employed in this research to assess scaling issues of land use change impacts on rainfall-runoff connections. Six tipping bucket rain gages were installed on the hill slopes of each sub-catchment and Parshall flumes were installed at the outlets of each sub-catchment to monitor stream flow. First, unit hydrograph that expressed the relationship of rainfall and runoff was computed using IHACRES model. Second, unit hydrograph was also constructed from observations of input and response during several significant storms with approximately equal duration. The result showed that most of the storm flow from these catchments consisted of slow flow. A maximum of about 50% of the effective rainfall became quick flow, and only less than 10% of remaining effective rainfall which was routed as slow flow contributed to hydrograph peaks; the rest was stored. Also, comparing peak responses and recession rates on the hydrograph, storm flow discharge was generally increased slowly on the rising limb and decreased rapidly on the falling limb. These responses indicated the soils in these catchments were still able to hold and store rain water.

The Distribution of POC and DOC in Four Reservoirs on the North Han River and the Relationship with Algal Density (북한강수계 호수의 POC와 DOC 분포와 조류밀도의 관계)

  • Kim, Kiyong;Kim, Bomchul;Eom, Jaesung;Choi, Youngsoon;Jang, Changwon;Park, Hae-kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.840-848
    • /
    • 2009
  • Spatial and temporal distributions of POC and DOC were surveyed in the North Han River system, Korea The proportion of algal cells was calculated in four reservoirs (Lakes Soyang, Paro, Chunchon, and Uiam). Monthly average DOC concentrations ranged from 1.5 to 2.3 mg C/L, and POC showed larger variation than DOC (range 0.3 to 1.9 mg C/L). The average proportion of POC in TOC was higher than those of typical natural lakes. Due to the influence of the Asian summer monsoon, the seasonal variation in POC concentration depended on heavy rain events occurring during the summer. POC concentrations increased during the summer monsoon season due to turbid storm runoff laden with debris, while DOC concentrations did not increase. The highest POC concentrations were observed in Lake Soyang in 2006 when a severe rain event occurred. In two deep stratified reservoirs (Lake Soyang and Paro) storm runoffs formed an intermediate turbidity layer with high POC and chlorophyll concentrations which is thought to originate from terrestrial debris and periphyton transported by inflowing streams. The proportion of algal cells in total POC was much lower than for most natural lakes, and it varied with season; low in the monsoon season and high in dry seasons with algal blooms. An analysis of POC concentration and chlorophyll a concentration showed that the ratio of POC/Chl.a varied from 24 to 80.

The Characteristics of Heavy Rainfall in Summer over the Korean Peninsula from Precipitation Radar of TRMM Satellite : Case Study (TRMM/PR 관측에 의한 한반도에서의 여름철 호우의 특성 : 사례연구)

  • 박혜숙;정효상;노유정
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.1
    • /
    • pp.55-64
    • /
    • 2000
  • The Tropical Rainfall Measuring Mission(TRMM) Satellite was launched in November 1997, carving into orbit the first space-borne Precipitation Radar(PR). The main objective of the TRMM is to obtain and study multi-year science data sets of tropical and subtropical rainfall measurements. In the present investigation, the characteristics of heavy rainfall cases over Korea in 1998 and 1999 are analyzed using the TRMM/PR dat3. We compare the rainrate measured from TRMM/PR with the accumulated rainfall data for 10 minutes tv Automatic Weather System(AWS). Especially, horizontal cross-section of rainrate with height and longitude in the precipitating clouds are investigated. As a result of the comparison with GMS-5 IR1, the TRMM/PR data delineate well the rain type( i.e. convective, stratiform cloud and others), height of storm top and instantaneous rainrate in the precipitating clouds. The vertical structure with height and horizontal cross-section of rainrate along the longitude show the orographic effect on the rainfall. TRMM/PR instrument measures the rainrate below 6 ㎜/hr more than AWS rainguages and inclined to underestimate the rainrate than rainguages for the whole area.

MTSAT Satellite Image Features on the Sever Storm Events in Yeongdong Region (영동지역 악기상 사례에 대한 MTSAT 위성 영상의 특징)

  • Kim, In-Hye;Kwon, Tae-Yong;Kim, Deok-Rae
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.29-45
    • /
    • 2012
  • An unusual autumn storm developed rapidly in the western part of the East sea on the early morning of 23 October 2006. This storm produced a record-breaking heavy rain and strong wind in the northern and middle part of the Yeong-dong region; 24-h rainfall of 304 mm over Gangneung and wind speed exceeding 63.7 m $s^{-1}$ over Sokcho. In this study, MTSAT-1R (Multi-fuctional Transport Satellite) water vapor and infrared channel imagery are examined to find out some features which are dynamically associated with the development of the storm. These features may be the precursor signals of the rapidly developing storm and can be employed for very short range forecast and nowcasting of severe storm. The satellite features are summarized: 1) MTSAT-1R Water Vapor imagery exhibited that distinct dark region develops over the Yellow sea at about 12 hours before the occurrence of maximum rainfall about 1100 KST on 23 October 2006. After then, it changes gradually into dry intrusion. This dark region in the water vapor image is closely related with the positive anomaly in 500 hPa Potential Vorticity field. 2) In the Infrared imagery, low stratus (brightness temperature: $0{\sim}5^{\circ}C$) develops from near Bo-Hai bay and Shanfung peninsula and then dissipates partially on the western coast of Korean peninsula. These features are found at 10~12 hours before the maximum rainfall occurrence, which are associated with the cold and warm advection in the lower troposphere. 3) The IR imagery reveals that two convective cloud cells (brightness temperature below $-50^{\circ}C$) merge each other and after merging it grows up rapidly over the western part of East sea at about 5 hours before the maximum rainfall occurrence. These features remind that there must be the upward flow in the upper troposphere and the low-layer convergence over the same region of East sea. The time of maximum growth of the convective cloud agrees well with the time of the maximum rainfall.

Studies on the Time Distribution of Heavy Storms (暴雨의 時間的 分布에 關한 硏究)

  • Lee, Keun-Hoo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.69-84
    • /
    • 1984
  • This study was carried out to investigate the time distribution of single storms and to establish the model of storm patterns in korea. Rainfall recording charts collected from 42 metheorological stations covering the Korean peninsula were analyzed. A single storm was defined as a rain period seperated from preceding and succeeding rainfall by 6 hours and more. Among the defined single storms, 1199 storms exceeding total rainfall of 80 mm were qualified for the study. Storm patterns were cklassified by quartile classification method and the relationship between cummulative percent of rainfalls and cummulative storm time was established for each quartile storm group. Time distribution models for each stations were prepared through the various analytical and inferential procedures. Obtained results are summarized as follows: 1. The percentile frequency of quartile storms for the first to the fourth quartile were 22.0%, 26.5%, 28.9% and 22.6%, respectively. The large variation of percentile frequency was show between the same quartile storms. The advanced type storm pattern was predominant in the west coastal type storm patterns predominantly when compared to the single storms with small total rainfalls. 3. The single storms with long storm durations tended to show delayed type storm patterns predominantly when compared to the single storms with short storm durations. 4. The percentile time distribution of quartile storms for 42 rin gaging stations was estimated. Large variations were observed between the percentiles of time distributions of different stations. 5. No significant differences were generally found between the time distribution of rainfalls with greater total rainfall and with less total rainfall. This fact suggests that the size of the total rainfall of single storms was not the main factor affecting the time distribution of heavy storms. 6. Also, no significant difference were found between the time distribution of rainfalls with long duration and with short duration. The fact indicates that the storm duration was no the main factor affecting the time distribution of heavy storms. 7. In Korea, among all single storms, 39.0% show 80 to 100mm of total rainfall which stands for the mode of the frequency distribution of total rainfalls. The median value of rainfalls for all single storms from the 42 stations was 108mm. The shape of the frequency distribution of total rainfalls showed right skewed features. No significant differences were shown in the shape of distribution histograms for total rainfall of quartile storms. The mode of rainfalls for the advanced type quartile storms was 80~100mm and their frequencies were 39~43% for respective quartiles. For the delayed type quartile storms, the mode was 80~100mm and their frequencies were 36!38%. 8. In Korea, 29% of all single storms show 720 to 1080 minutes of storm durations which was the highest frequency in the frequency distribution of storm durations. The median of the storm duration for all single storms form 42 stations was 1026 minutes. The shape of the frequency distribution was right skewed feature. For the advanced type storms, the higher frequency of occurrence was shown by the single storms with short durations, whereas for the delayed type quartile storms, the higher frequency was shown gy the long duration single storms. 9. The total rainfall of single storms was positively correlated to storm durations in all the stations throughout the nation. This fact was also true for most of the quartile storms. 10. The third order polynomial regression models were established for estimating the time distribution of quartile storms at different stations. The model test by relative error method resulted good agreements between estimated and observed values with the relative error of less than 0.10 in average.

  • PDF

A Study on Runoff Characteristics by the Moving Storm in the Watershed using GIS (GIS를 활용한 유역내 이동강우에 의한 유출특성 연구)

  • Choe, Gye-Un;Gang, Hui-Gyeong;Park, Yong-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.793-804
    • /
    • 2000
  • Even thought the distribution of the rainfall in the watershed is spatially and temporally vareid, the simulation of the runoff from the watershed is frequently conducted with the constant rainfall distribution assumption. However, the runoff simulated with this assumption indicates over the certain accuracy limitation and the difference by this assumption is bigger in the case of the moving storm which can be frequently indicated with the typhoon, cyclone and hurricane and so on. In this paper, the runoff characteristics of the moving storm are investigated using GIS technique and the isohyetal map observed from 16:00 to 23:00 on August 2, 1999 to the Chun Yang rain gage. The runoff simulated by the moving storms moving to the eight different directions is compared with the others and indicates the big difference with the maximum runoff in the SE direction in the Bokha experimental watershed. Also, the runoff by the moving storm having different moving velocities is compared with the others and indicates the big difference with the bigger discharge in the slowly moving storm. Through the simulation using GIS technique in the watershed, the advantages of the easy preparation of the data and the short computational time can be obtained.

  • PDF

Application of PCSWMM for the Analysis of Water Quantity and Quality Considering CSOs (CSOs를 고려한 도시유역의 수량 및 수질 분석을 위한 PCSWMM 모형의 적용)

  • Hong, Won-Pyo;Chung, Eun-Sung;Lee, Joon-Seok;Kim, Kyung-Tae;Lee, Kil Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.26-36
    • /
    • 2009
  • Combined sewer system (CSS) has been built in the most urban areas across the nation. During dry weather conditions, CSS works fine. But during heavy rain storms, combined sewage frequently overflows into the stream. This study simulated the hydrologic cycle and pollutant loads (BOD, SS, TN and TP) in the Mokgamcheon watershed considering combined sewer overflows (CSOs). PC storm water management model (PCSWMM) was used for continuous simulation and CSOs are considered using the flow divider. Sensitivity analysis, calibration and verification for water quantity and quality are carried out. To verify CSOs, field measurements of CSOs are compared with simulated results. As a result, 41.3% of precipitation flows into the stream directly and 1.1% of water supply flows into stream as CSOs. 6.5% of BOD total loads, 12.0% of SS, 13.6% of TP, and 29.2% of TN are from CSOs. This result will be effective to the integrated watershed management for sustainability.

Development and Effects Analysis of The Decentralized Rainwater Management System by Field Application

  • Han, Young Hae;Lee, Tae Goo
    • KIEAE Journal
    • /
    • v.14 no.3
    • /
    • pp.15-21
    • /
    • 2014
  • In this study, we developed a modular rainwater infiltration system that can be applied for general purposes in urban areas to prepare for localized heavy rain caused by climatic change. This study also analyzed the system's effects on reducing runoff. An analysis of the system's effects on reducing runoff based on rainfall data and monitoring data obtained between September 2012 and December 2013 after the system was installed showed that approximately 20~22% of the runoff overflowed from the infiltration facility. Also, an analysis of the runoff that occurred during the monsoon season showed that 25% of the runoff overflowed through the storm sewer system of the urban area. These results show that the rainwater overflows after infiltrating the detention facility installed in the area during high-intensity rainfall of 100mm or higher or when precipitation is 100mm for 3~4 days without the prior rainfall. According to precipitation forecasts, torrential rainfall is becoming increasingly prevalent in Korea which is increasing the risk of floods. Therefore, the standards for storm sewer systems should be raised when planning and redeveloping urban areas, and not only should centralized facilities including sewer systems and rainwater pump facilities be increased, but a comprehensive plan should also be established for the water cycle of urban areas. This study indicates that decentralized rainwater management can be effective in an urban area and also indicates that the extended application of rainwater infiltration systems can offer eco-friendly urban development.