• Title/Summary/Keyword: Railway wheels

Search Result 138, Processing Time 0.033 seconds

Comparison of track vibration characteristics for domestic railway tracks in the aspect of rolling noise (철도 전동 소음의 관점에서 해석한 국내 철도의 진동 특성 비교)

  • Ryue, Jungsoo;Jang, Seungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.644-647
    • /
    • 2013
  • The important source of noise from railways is rolling noise caused by wheel and rail vibrations induced by acoustic roughness at the wheel-rail contact. The main contributors for rolling noise are the sleepers, rail and wheels. In order to analyze and predict rolling noise, it is necessary to understand the vibrating behaviors of railway tracks, as well as the wheels. In the present paper, theoretical modelings of the railway track are reviewed in terms of the rolling noise, and they are applied for the three representative types of domestic railway tracks operated: the conventional ballasted track, KTX ballasted track and KTX concrete track. The characteristics of waves propagating along rails were investigated and compared between the tracks. The tracks were modeled as discretely supported Timoshenko beams and compared in terms of the averaged squared amplitude of velocity which is directly related to the sound radiation from the rails.

  • PDF

A Coupled Vibration Analysis of Railway Track System with Consideration of Contact Stiffness (접촉강성을 고려한 차량-레일계의 연성진동해석)

  • 류윤선;조희복;김사수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.241-246
    • /
    • 1997
  • Corrugation of railway track can be caused by the various dynamic behaviors of traveling wheels and track. In this paper, the coupled vibrations of traveling wheel and railway track are analyzed as the cause of corrugations. To analyze the coupled vibration, the track supported by the sleepers and the traveling wheels are identified to the elastically supported infinite beam and the spring-mass system which runs at constant speed. The Hertzian contact spring is considered between the infinite beam and spring-mass system. The dynamic responses of elastically supported infinite beam and spring-mass system are calculated. The cause and development of rail corrugation are discussed in the view point of contact force fluctuation affected by the elastic supports and the corrugated surface profile on the track. By the obtained results, the possibilities of resonance are checked between the excitation by the corrugated surface profile and the natural frequency of contact spring-mass system. It may be thought to a development of railway corrugation.

  • PDF

Stress Analysis in the Elastic-Plastic Analysis of Railway Wheels

  • Ashofteh, Roya Sadat;Mohammadnia, Ali
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Fatigue and wear in wheels is often due to the forces and loading. These certainly have fundamental effects on reducing the wheel life and increasing the costs related to repairing and maintenance. Modeling and stress analysis of a wheel sample existing in the Iranian fleet have been performed in its contact with U33 and UIC60 rails. The results have been reviewed and analyzed in elastic and elastic-plastic phase and under static (railcar weight) and quasi static loads. Moreover, effects of wheel diameter, axle load, wheel material, rail type are analyzed.

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • 한형석;이은호;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail geometric contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

Analysis on Steering Capability of a New Bogie with Independently Rotating Wheels

  • Chi, Maoru;Zeng, Jing;Guo, Wenhao;Zhang, Weihua;Jin, Xuesong
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.164-169
    • /
    • 2009
  • A new scheme about a coupled bogie with Independently Rotating Wheels was put forward firstly. And then it is fund by theoretic analysis that the bogie takes on prominent radial capability on curved track and splendiferous restoring capability on tangent track. Lastly, a dynamic calculating model of the coupled bogie with independently rotating wheels has been established and a dynamic simulation analysis on steering capability of the bogie was made and the simulation results can inosculate foregoing theoretic analysis, which illuminates that the coupled bogie can solve drastically the difficulty about steering problem of independently rotating wheel.

  • PDF

A Study on the Contact Fatigue Life Evaluation for Railway Wheels Considering Residual Stress Variation (잔류응력 변화를 고려한 철도차량 차륜의 접촉피로 수명평가)

  • Seo, Jung-Won;Goo, Byeong-Choon;Choi, Jae-Boong;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1391-1398
    • /
    • 2004
  • Railway wheels and axles belong to the most critical components in railway vehicles. The service conditions of railway vehicles became more severe in recent years due to the increase of speed. Therefore, a more precise evaluation of wheelset life and safety has been requested. Wheel/rail contact fatigue and thermal cracks due to braking heat are two main mechanisms of the railway wheel failure. In this paper, an evaluation procedure for the contact fatigue life of railway wheel is proposed. One of the main sources of the contact zone failure is the residual stress. The residual stress on wheel is formed during the manufacturing process which includes a heat treatment, and then is changed by contact stress developed by wheel/rail contact and thermal stress induced by braking. Also, the cyclic stress history for fatigue analysis is determined by applying finite elements analysis for the moving contact load. The objective of this paper is to estimate fatigue life by considering residual stress due to heat treatment, braking and repeated contact load, respectively.

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

A Study on Prediction of Rolling Noise for Railway -Noise Contribution of Wheels and Rail- (철도차량의 전동음 예측에 관한 연구 -차륜과 레일의 소음 기여도 분석-)

  • 김재철;구동회
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.486-492
    • /
    • 2000
  • The major source of railway noises is rolling noise caused by the interaction of the wheels and rails. This rolling noise is generated by the roughness of the wheel /rail surface on tangent track in the absence of discontinuities such as wheel flats or rail joints. These roughness cause relative vibrations of the wheel and rail at their contact area. The vibrations generated at the contact area are treansmitted through the wheel and rail structures exciting resonances of the wheel and travelling waves in the rail. Then these vibrations radiate noise to the wayside. In this paper we predict the rollingnoise radiated from radial/axial motion of the wheel and vertical/lateral motion of the rail using Remington's analytical model and then compare of the predicted sound pressure and measured one. Although there are some inaccuracy in our prediction. these results show in good agreement between 500 Hz and 3150 Hz.

  • PDF

A Study on Prediction of Rolling Noise for Railway;- Calculation of Ground Effect and Noise Radiated by Sleeper- (철도차량의 전동음 예측에 관한 연구;- 지표면 효과 및 침목에서 방사되는 소음 계산 -)

  • 김재철;정현범;이재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2003
  • The major noise source for the conventional train is the rolling noise caused by the interaction of the wheels and rails during the train passage on the tangent track. In order to control the rolling noise, the noise radiated from wheels, rails and sleepers should be analyzed and predicted. In this paper, a prediction method of wheel/rail rolling noise generated by the roughness of the wheel/rail surface is described, where the method is considering the effect of noise radiated by sleepers and the effect of ground. The method is applied to the Korean railway system, and the sound pressure level (SPL) predicted by the proposed method is compared with the measured SPL. Overall. the result shows good agreement between the predicted and measured values.

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • Han Hyung-Suk;Lee En-Ho;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.645-650
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

  • PDF